Discussion of

Dollar Invoicing and the Heterogeneity of Exchange Rate Pass-Through

BY EMINE BOZ, GITA GOPINATH AND MIKKEL PLAGBORG-MØLLER

OLEG ITSKHOKI Princeton University

> AEA Meetings Atlanta 2019

Dominant Currency Paradigm (DCP)

- This paper is part of the influential DCP agenda, which has produced a number of important insights:
 - Exchange rate fluctuations leave Terms of trade (ToT) stable with consequences for the (lack of) expenditure switching
 - 2 Depreciations against the dollar, rather than the trade partner, drive import prices and import quantities
 - 3 Appreciation of the dollar leads to a decline in global trade

- The effects are stronger:
 - 1 the larger is the share of DCP invoicing
 - 2 the stickier are the price in the currency of invoicing

This paper

• Quantifies the role of the DCP invoicing share S_j in explaining the heterogeneity of pass-through elasticities across countries:

e.g. Switzerland (low S_j) vs Turkey (mid S_j) vs Argentina (high S_j)

• Uses Bayesian econometric techniques to estimate the following pass-through specification:

$$\Delta p_{ij,t} = \gamma_{ij} \Delta e_{\$j,t} + (\bar{\gamma} - \gamma_{ij}) \Delta e_{ij,t} + \lambda_{ij} + \delta_t + \varepsilon_{ij,t},$$

where $\gamma_{ij}|S_j \sim \mathcal{N}(\mu_{0,k} + \mu_{1,k}S_j, \omega_k^2)$ w/prob $\pi_k(S_j), k = 1..K$

- The goal is to characrterize the density $f(\gamma_{ij}|S_j)$
 - that is, what is the distribution of ERPT elasticity conditional on the country's DCP invoicing share in imports

Findings on $f(\gamma_{ij}|S_j)$

High average pass-through γ_{ij} from dollar exchange rate Δe_{\$j}
 E{γ_{ij}|S_j} increases by about 0.15 over the range of S_j
 R² of S_i in explaining variation in γ_{ij} is about 16%

Comment 1: Assumptions

- Why a constant $\bar{\gamma}$ in

$$\Delta p_{ij,t} = \gamma_{ij} \Delta e_{\$j,t} + (\bar{\gamma} - \gamma_{ij}) \Delta e_{ij,t} + \lambda_{ij} + \delta_t + \varepsilon_{ij,t}$$

to economize on the number of parameters
 because trade that is not invoiced in \$ is in LCP

Comment 1: Assumptions

• Why a constant $ar{\gamma}$ in

$$\Delta p_{ij,t} = \gamma_{ij} \Delta e_{\$j,t} + (\bar{\gamma} - \gamma_{ij}) \Delta e_{ij,t} + \lambda_{ij} + \delta_t + \varepsilon_{ij,t}$$

to economize on the number of parameters
 because trade that is not invoiced in \$ is in LCP

Why this richness in the distribution

$$\gamma_{ij}|\mathcal{S}_{j}\sim\mathcal{N}(\mu_{0,k}+\mu_{1,k}\mathcal{S}_{j},\omega_{k}^{-2})~~\mathrm{w/prob}~~\pi_{k}(\mathcal{S}_{j}),~~k=1..$$
 K

- **1** Can one tradeoff less richness here and relax constant $\bar{\gamma}$?
- 2 What is the role of K = 2 vs K = 1? Heavy tails?
- What is the shape of π₁(S_j) and its role in fitting E{γ_{ij}|S_j}?
 E{γ_{ij}|S_j} looks pretty linear and std(γ_{ij}|S_j) looks pretty constant

Comment 2: Data Limitations

- Ideally, one needs S_{ij} invoicing share by country pair, while the available data is at the country level, S_j
- The paper justifies it with the micro data on Columbia
 - In Columbia, S_{ij} varies little across i
 - Columbia is an unfortunate example, since $S_j \approx 100\%$ dollar

Comment 2: Data Limitations

- Ideally, one needs S_{ij} invoicing share by country pair, while the available data is at the country level, S_i
- The paper justifies it with the micro data on Columbia
 - In Columbia, S_{ij} varies little across i
 - Columbia is an unfortunate example, since $S_jpprox 100\%$ dollar
- Variation in S_{ij} and use of third currencies (PCP) in Belgium

Trend: Swiss imports from Belgium

Amiti, Itskhoki and Konings (2018b) "Dominant Currencies..."

Comment 3: Structural Equation

• Fully sticky prices:

$$\Delta p_{ij,t} = S_{ij}^{\$} \Delta e_{\$j,t} + S_{ij}^{L} \Delta e_{ij,t}$$

Comment 3: Structural Equation

• Fully sticky prices:

$$\Delta p_{ij,t} = S_{ij}^{\$} \Delta e_{\$j,t} + S_{ij}^{L} \Delta e_{ij,t}$$

• Partially sticky prices (assume $S_{ij}^L = 0$ for simplicity):

$$\Delta p_{ij,t} = heta \cdot S^{\$}_{ij} \Delta e_{\$j,t} + (1- heta) \cdot \Delta \widetilde{
ho}_{ij,t},$$

where desired price adjustment $\Delta \tilde{p}_{ij,t}$ has a complex structure (see AIK 2014 and 2018b):

$$\Delta \tilde{p}_{ij,t} = \left[\alpha_i + \beta_i \varphi_j^i + \gamma_i \omega_{ij} \right] \Delta e_{ij,t} + \beta_{\$} \varphi_j^{\$} \Delta e_{\$j,t} + \dots$$

— as horizon increases, $\Delta \tilde{\rho}_{ij,t}$ should become more important than $\Delta e_{\$j,t}$ in explaining $\Delta p_{ij,t}$

Comment 3: Structural Equation

• Fully sticky prices:

$$\Delta p_{ij,t} = S_{ij}^{\$} \Delta e_{\$j,t} + S_{ij}^{L} \Delta e_{ij,t}$$

• Partially sticky prices (assume $S_{ij}^L = 0$ for simplicity):

$$\Delta p_{ij,t} = heta \cdot S^{\$}_{ij} \Delta e_{\$j,t} + (1- heta) \cdot \Delta \widetilde{
ho}_{ij,t},$$

where desired price adjustment $\Delta \tilde{p}_{ij,t}$ has a complex structure (see AIK 2014 and 2018b):

$$\Delta \tilde{p}_{ij,t} = \left[\alpha_i + \beta_i \varphi_j^i + \gamma_i \omega_{ij} \right] \Delta e_{ij,t} + \beta_{\$} \varphi_j^{\$} \Delta e_{\$j,t} + \dots$$

- as horizon increases, $\Delta \tilde{p}_{ij,t}$ should become more important than $\Delta e_{\$j,t}$ in explaining $\Delta p_{ij,t}$
- most surprising is the role Δe_{s_j} plays beyond annual horizon: price stickiness vs endogenous monetary policy response?

Comment 4: Quantities

- Interesting to see the results for quantities?
- What is the heterogeneity in the implied elasticities?
- Why results for quantities are less precise?