Discussion of

Globalization, Trade Imbalances, and Labor Market Adjustment

by Dix-Carneiro, Pessoa, Reyes-Heroles, Traiberman

OLEG ITSKHOKI Princeton and UCLA

Conference on Macroeconomic Implications of Trade Policies and Trade Shocks UC Berkeley, 2020

Question

- What are the current account implications of trade shocks?
 - 1 Can tariffs be a useful tool to close current account deficits?
 - 2 Does productivity growth abroad lead to trade deficit at home?
 - and, if yes, what does this imply for labor market adjustment?

Question

- What are the current account implications of trade shocks?
 - 1 Can tariffs be a useful tool to close current account deficits?
 - **2** Does productivity growth abroad lead to trade deficit at home?
 - and, if yes, what does this imply for labor market adjustment?
- First-order questions on which the literature largely puns
 - Quantitative trade papers typically avoid modeling intertemporal trade (making some ad hoc assumption)

Question

- What are the current account implications of trade shocks?
 - Can tariffs be a useful tool to close current account deficits?
 Does productivity growth abroad lead to trade deficit at home?
 and, if yes, what does this imply for labor market adjustment?
- First-order questions on which the literature largely puns
 - Quantitative trade papers typically avoid modeling intertemporal trade (making some ad hoc assumption)
- This papers attempts to offer a serious quantitative treatment of this issue, with the implication for labor market dynamics
 - two separate issues: (a) trade imbalance & (b) labor adjustment

(The Macroeconomic Effects of Tariffs, 2019)

• Lerner symmetry Lerner (1936) fundamental result:

Import tariff = Export tax

(The Macroeconomic Effects of Tariffs, 2019)

• Lerner symmetry Lerner (1936) fundamental result:

Import tariff = Export tax

- follows from (intertemporal) budget constraint of a country

 ${\sf Import \ tariff} \ \Rightarrow \ {\sf Imports} \ \downarrow \ \Rightarrow \ {\sf CA \ imbalance} \ \Rightarrow \ {\sf RER \ appreciation} \ \Rightarrow \ {\sf Exports} \ \downarrow$

(The Macroeconomic Effects of Tariffs, 2019)

• Lerner symmetry Lerner (1936) fundamental result:

Import tariff = Export tax

— follows from (intertemporal) budget constraint of a country

Import tariff \Rightarrow Imports $\downarrow \Rightarrow$ CA imbalance \Rightarrow RER appreciation \Rightarrow Exports \downarrow

- holds generally under flex prices (Costinot & Werning 2019)

(The Macroeconomic Effects of Tariffs, 2019)

• Lerner symmetry Lerner (1936) fundamental result:

Import tariff = Export tax

- follows from (intertemporal) budget constraint of a country

 ${\sf Import \ tariff} \ \Rightarrow \ {\sf Imports} \ \downarrow \ \Rightarrow \ {\sf CA \ imbalance} \ \Rightarrow \ {\sf RER \ appreciation} \ \Rightarrow \ {\sf Exports} \ \downarrow$

- holds generally under flex prices (Costinot & Werning 2019)
- implies neutrality of *border adjustment taxes*, e.g., VAT, BAT (Grossman 1980, Feldstein & Krugman 1990)

(The Macroeconomic Effects of Tariffs, 2019)

• Lerner symmetry Lerner (1936) fundamental result:

Import tariff = Export tax

- follows from (intertemporal) budget constraint of a country

 $\mathsf{Import} \ \mathsf{tariff} \ \Rightarrow \ \mathsf{Imports} \ \downarrow \ \Rightarrow \ \mathsf{CA} \ \mathsf{imbalance} \ \Rightarrow \ \mathsf{RER} \ \mathsf{appreciation} \ \Rightarrow \ \mathsf{Exports} \ \downarrow$

- holds generally under flex prices (Costinot & Werning 2019)
- implies neutrality of *border adjustment taxes*, e.g., VAT, BAT (Grossman 1980, Feldstein & Krugman 1990)
- this perhaps suggests tariffs are not a macro policy tool

(The Macroeconomic Effects of Tariffs, 2019)

• Lerner symmetry Lerner (1936) fundamental result:

Import tariff = Export tax

- follows from (intertemporal) budget constraint of a country

 ${\sf Import \ tariff} \ \Rightarrow \ {\sf Imports} \ \downarrow \ \Rightarrow \ {\sf CA \ imbalance} \ \Rightarrow \ {\sf RER \ appreciation} \ \Rightarrow \ {\sf Exports} \ \downarrow$

- holds generally under flex prices (Costinot & Werning 2019)
- implies neutrality of *border adjustment taxes*, e.g., VAT, BAT (Grossman 1980, Feldstein & Krugman 1990)
- this perhaps suggests tariffs are not a macro policy tool
- However: Lerner symmetry does not hold under sticky prices
 - 1 Fiscal devaluations (Farhi, Gopinath & Itskhoki 2014)
 - 2 BAT and VAT (Barbiero, Farhi, Gopinath & Itskhoki 2019)
 - **3** Output gap shifting in liquidity traps (Jeanne 2018)

- What about the "China shock" \Rightarrow the US current account?
 - 1 Large/broad productivity increase in China
 - 2 Major reduction in trade barriers
 - **3** Global savings glut (and perhaps exchange rate policy)

- What about the "China shock" \Rightarrow the US current account?
 - 1 Large/broad productivity increase in China
 - 2 Major reduction in trade barriers
 - **3** Global savings glut (and perhaps exchange rate policy)
- We expect real exchange rate (relative wage) adjustment

- What about the "China shock" \Rightarrow the US current account?
 - 1 Large/broad productivity increase in China
 - 2 Major reduction in trade barriers
 - **3** Global savings glut (and perhaps exchange rate policy)
- We expect real exchange rate (relative wage) adjustment
- Two disciplining equations:
 - 1 Intertemporal budget constraint \longrightarrow on-impact jump in RER
 - **2** Risk-sharing \longrightarrow future path of RER

- What about the "China shock" ⇒ the US current account?
 - 1 Large/broad productivity increase in China
 - 2 Major reduction in trade barriers
 - **3** Global savings glut (and perhaps exchange rate policy)
- We expect real exchange rate (relative wage) adjustment
- Two disciplining equations:
 - 1 Intertemporal budget constraint \longrightarrow on-impact jump in RER
 - **2** Risk-sharing \longrightarrow future path of RER
- This allows for a one-time on-impact adjustment to the shock that ensures long-run balanced budget
 - Is it really the case in practice?

• Risk sharing and intertemporal budget constraint:

$$\mathbb{E}_t \{ \sigma(\Delta c_{t+1} - \Delta c_{t+1}^*) - \Delta q_{t+1} \} = 0,$$

$$nx_t = 2\hat{\theta}q_t - (c_t - c_t^*), \qquad b_0 + \sum_{t=0}^{\infty} \beta^t nx_t = 0$$

• Risk sharing and intertemporal budget constraint:

$$\mathbb{E}_t \{ \sigma(\Delta c_{t+1} - \Delta c_{t+1}^*) - \Delta q_{t+1} \} = 0,$$

 $nx_t = 2\hat{\theta}q_t - (c_t - c_t^*), \qquad b_0 + \sum_{t=0}^{\infty} \beta^t nx_t = 0$

$$c_t - c_t^* = \kappa_a(a_t - a_t^*) - \kappa_q q_t$$

• Risk sharing and intertemporal budget constraint:

$$\mathbb{E}_t \{ \sigma(\Delta c_{t+1} - \Delta c_{t+1}^*) - \Delta q_{t+1} \} = 0,$$

$$nx_t = 2\hat{\theta}q_t - (c_t - c_t^*), \qquad b_0 + \sum_{t=0}^{\infty} \beta^t nx_t = 0$$

Market clearing:

$$c_t - c_t^* = \kappa_a(a_t - a_t^*) - \kappa_q q_t$$

• Result: Random-walk shocks lead to a one-time adjustment

• Risk sharing and intertemporal budget constraint:

$$\mathbb{E}_t \{ \sigma(\Delta c_{t+1} - \Delta c_{t+1}^*) - \Delta q_{t+1} \} = 0,$$

$$nx_t = 2\hat{\theta}q_t - (c_t - c_t^*), \qquad b_0 + \sum_{t=0}^{\infty} \beta^t nx_t = 0$$

$$c_t - c_t^* = \kappa_a(a_t - a_t^*) - \kappa_q q_t$$

- Result: Random-walk shocks lead to a one-time adjustment
- Assumptions: flexible prices, no *J*-curve delayed adjustment, flexible reallocation (within and across sectors)

• Risk sharing and intertemporal budget constraint:

$$\mathbb{E}_t \{ \sigma(\Delta c_{t+1} - \Delta c_{t+1}^*) - \Delta q_{t+1} \} = 0,$$

$$nx_t = 2\hat{\theta}q_t - (c_t - c_t^*), \qquad b_0 + \sum_{t=0}^{\infty} \beta^t nx_t = 0$$

$$c_t - c_t^* = \kappa_a(a_t - a_t^*) - \kappa_q q_t$$

- Result: Random-walk shocks lead to a one-time adjustment
- Assumptions: flexible prices, no *J*-curve delayed adjustment, flexible reallocation (within and across sectors)
- Not if there is endogenous transition dynamics this paper!

• Risk sharing and intertemporal budget constraint:

$$\mathbb{E}_t \{ \sigma(\Delta c_{t+1} - \Delta c_{t+1}^*) - \Delta q_{t+1} \} = 0,$$

$$nx_t = 2\hat{\theta}q_t - (c_t - c_t^*), \qquad b_0 + \sum_{t=0}^{\infty} \beta^t nx_t = 0$$

$$c_t - c_t^* = \kappa_a(a_t - a_t^*) - \kappa_q q_t$$

- Result: Random-walk shocks lead to a one-time adjustment
- Assumptions: flexible prices, no *J*-curve delayed adjustment, flexible reallocation (within and across sectors)
- Not if there is endogenous transition dynamics this paper!
- Risk sharing condition in trade with China is perhaps violated

• Risk sharing and intertemporal budget constraint:

$$\mathbb{E}_t \{ \sigma(\Delta c_{t+1} - \Delta c_{t+1}^*) - \Delta q_{t+1} \} = 0,$$

$$nx_t = 2\hat{\theta}q_t - (c_t - c_t^*), \qquad b_0 + \sum_{t=0}^{\infty} \beta^t nx_t = 0$$

$$c_t - c_t^* = \kappa_a(a_t - a_t^*) - \kappa_q q_t$$

- Result: Random-walk shocks lead to a one-time adjustment
- Assumptions: flexible prices, no *J*-curve delayed adjustment, flexible reallocation (within and across sectors)
- Not if there is endogenous transition dynamics this paper!
- Risk sharing condition in trade with China is perhaps violated
 Brunnermeier, Gourinchas & Itskhoki (2020) drop risk sharing to study growth trajectories under arbitrary path of CA

What about Labor Market Dynamics?

- Costs of switching $(C_{k,k'})$ are highly relevant for big trade shocks
 - but firms, or industries, or occupations, or geography?
 - o perhaps, a stand-in for specific human capital

What about Labor Market Dynamics?

- Costs of switching $(C_{k,k'})$ are highly relevant for big trade shocks
 - o but firms, or industries, or occupations, or geography?
 - o perhaps, a stand-in for specific human capital
- DMP labor search frictions, perhaps, not as much
 o if duration of unemployment is only 4–6 months
 o one-time adjustment to a permanent shock

What about Labor Market Dynamics?

- Costs of switching $(C_{k,k'})$ are highly relevant for big trade shocks
 - but firms, or industries, or occupations, or geography?
 - o perhaps, a stand-in for specific human capital
- DMP labor search frictions, perhaps, not as much
 - if duration of unemployment is only 4-6 months
 - o one-time adjustment to a permanent shock
- Perhaps, downward wage rigidity or wait unemployment are more relevant than search unemployment in response to large trade shocks

Labor Dynamics with Search Frictions

Itskhoki and Helpman (2016)

Labor Dynamics with Search Frictions

Itskhoki and Helpman (2016)

- Necessary ingredients (conclusion slide):
 - 1 Downward wage rigidity and inefficient separations
 - 2 Slow mobility across sectors \checkmark
 - Slow firm entry and job creation (perhaps, causing CA deficits)