Discussion of

"R&D Investment, Exporting, and Productivity Dynamics" by Bee Yan Aw, Mark Roberts, and Daniel Xu

Oleg Itskhoki Princeton University

NBER Summer Institute 2009 ITI Workshop

I. Place in the Literature

1 Empirics on exporting and productivity:

- Bernard and Jensen (1999)
- Bustos (2007)
- 2 Theoretical models with export and R&D investment:
 - Atkeson and Burstein (2008)
 - Constantini and Melitz (2008)
- **3** Structural estimation of industry equilibrium:
 - Olley and Pakes (1996): productivity dynamics
 - Das, Roberts and Tybout (2007): exporting with sunk and fixed costs

II. Data

- Taiwanese Electronics Industry
- Balanced panel of 1,237 plants for 2000-2004
- Data on domestic and export revenues, as well as R&D expenditure
- Export and R&D transition dynamics:

	Neither	only R&D	only Export	Both	Uncond'l
Neither	0.87	0.01	0.11	0.01	0.56
only R&D	0.37	0.34	0.06	0.23	0.04
only Export	0.21	0.01	0.71	0.07	0.26
Both	0.02	0.06	0.15	0.77	0.15

III. Model

• Firm's problem:

$$\max_{\substack{\{e_t,d_t\in\{0,1\}\}}} \left\{ \mathbb{E}_0 \sum_{t=0}^{\infty} \delta^t \Big\{ \pi^{D}(\omega_t) + e_t \big[\pi^{X}(\omega_t, z_t) - \gamma^{X}(e_{t-1}) \big] - d_t \gamma^{R}(d_{t-1}) \Big\} \right\}$$

subject to productivity evolution:

$$\omega_t = g(\omega_{t-1}, e_{t-1}, d_{t-1})$$

- No static optimization
- High ω_t affects incentives for both e_t and d_t
- Interactions between e_t and d_t through both objective function and productivity dynamics
- Persistence through sunk versus fixed costs (both *iid*): option value of waiting

IV. Estimation

1 Static equations:

- $\{tvc_{it}, r_{it}^{D}, r_{it}^{X}\}$ to estimate elasticity of demand
- $\{r_{it}^{D}, k_{it}, m_{it}, n_{it}\}$ to estimate productivity ω_{it}
- $\{r_{it}^{X}, \omega_{it}\}$ to estimate export demand shock z_{it}
- **2** Productivity dynamics:

$$\omega_{it} = g(\omega_{it-1}, e_{it-1}, d_{it-1})$$

Estimated by OLS using a parametric assumption about $g(\cdot)$

- **3** Dynamic exporting and investment decisions:
 - $\{e_{it}, d_{it} | z_{it}\}$ to estimate parameters of the model (sunk and fixed costs) using ML

V. Results

1 Productivity dynamics (estimation of $g(\cdot)$):

$$\frac{\Delta\omega_{it}}{\Delta e_{it-1}} > 0 \qquad \frac{\Delta\omega_{it}}{\Delta d_{it-1}} > 0 \qquad \frac{\Delta^2\omega_{it}}{\Delta e_{it}\Delta d_{it}} < 0$$

2 Sunk and Fixed costs of Exporting and R&D:

- R&D costs roughly twice as big as Export costs
- Sunk costs are roughly twice as big as Fixed costs
- Around 10% of revenues

3 Interdependence between exporting and investment:

- Selection based on ω_{it} for both e_{it} and d_{it}
- A lot of persistence due to large sunk costs relative to fixed costs
- Probability of exporting decreasing in R&D and probability of investment decreases in export status due to the interaction in the productivity dynamics

VI. Comments

- What is the takeaway: virtually no interaction between exporting and investment decisions?
- 2 What are the guidelines for calibration (fixed and sunk costs)?
- **3** $g(\cdot)$ is a black box: what is the source of interaction between e and d?
- Benchmark when g is separable in e and d: interaction only through the objective function
- **5** Endogeneity in $\omega_t = g(\omega_{t-1}, e_{t-1}, d_{t-1})$
- 6 Data on R&D expenditure is not used

VI. Comments (continued)

- The role of k_{it} in the marginal cost? Absence of l_{it} in estimation?
- Is the absence of persistence in γ s crucial?
- Balanced panel: entry and exit decisions?
- *e* and *d* are not directly comparable