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Abstract

We develop a general policy analysis framework for an open economy that features nominal
rigidities and �nancial frictions giving rise to endogenous PPP and UIP deviations. The e�cient
allocation can be implemented with monetary policy closing the output gap and FX interventions
eliminating UIP deviations. When the “natural” real exchange rate is stable, both goals can be
achieved solely by monetary policy that �xes the exchange rate — an open-economy divine coinci-
dence. More generally, optimal policy features a managed �oat/crawling peg complemented with
FX forward guidance and macroprudential accumulation of FX reserves, in line with the “fear of
�oating” observed in the data. Capital controls are not necessary to achieve the frictionless allo-
cation, but they facilitate the extraction of rents in the currency market. Constrained unilateral
policies are not optimal from the global perspective, and international cooperation features a com-
plementary use of FX interventions across countries.
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1 Introduction

What is the optimal exchange rate policy, and in particular when should the exchange rate be �xed,
managed or allowed to freely �oat? If the optimal exchange rate is managed, is the peg achieved by
means of monetary policy, foreign exchange interventions (FXI), or capital controls, or using a mix
of these policy instruments? What are the spillovers from unilateral exchange rate policies and are
there gains from international cooperation? Is there a trilemma constraint that requires a compromise
between in�ation and exchange rate stabilization? These classic questions in international macroeco-
nomics are generally di�cult to address as the exchange rate is not an immediate policy objective, but
rather an endogenous variable with equilibrium linkages in both product and �nancial markets. At the
same time, equilibrium exchange rate behavior features a variety of puzzles from the point of view of
conventional business cycle models which, in turn, casts doubt on their normative implications (Rogo�
1996, Engel 1996, Obstfeld and Rogo� 2001).

We address these questions by developing a tractable policy analysis framework that is consistent
with the major empirical properties of exchange rates, in particular during the episodes of switching
between �oating and �xed exchange rate regimes (Itskhoki and Mukhin 2021a,b). We focus on a prob-
lem of a small open economy with two frictions — nominal rigidities in product markets and imperfect
intermediation in segmented �nancial markets — which correspondingly give rise to frictional devia-
tions from the purchasing power parity (PPP) and the uncovered interest rate parity (UIP). The nominal
exchange rate plays a dual role. In the goods market, when prices (or wages) are sticky, it allows for
the real exchange rate adjustment and expenditure switching necessary to support the e�cient level of
output. In the �nancial market, nominal exchange rate volatility results in a currency risk premium and
UIP deviations, as international �nancial �ows must be intermediated by risk-averse market makers ex-
posed to the nominal exchange rate risk. This limits the extent of international risk sharing and results
in welfare losses. It is this second policy objective — which emerges from frictional UIP violations and
gives rise to e�ective interventions in currency markets (FXI) — that distinguishes our analysis from
the classic trilemma models (Mundell 1963, Fleming 1962).1

Following the seminal work of Clarida, Gali, and Gertler (1999, henceforth CGG) and Woodford
(2003) for closed economies, we show that the planner’s problem attains an intuitive linear-quadratic
representation with a welfare loss function that depends on the output gap, in�ation and a novel risk-
sharing wedge closely related to frictional UIP deviations. Crucially for tractability, we develop a new
approximation technique which ensures that the risk premium in the currency market does not drop out
from the linearized equilibrium system and a�ects the �rst-order dynamics of macroeconomic variables
resulting in non-linear state-contingent optimal policies. The planner minimizes welfare losses relative
to the �rst-best allocation subject to the equilibrium conditions in the goods and asset markets and
using two policy instruments — the domestic interest rates (monetary policy) and FX interventions in
the currency market.

1Trilemma models constitute the main policy analysis framework in international macroeconomics following Dornbusch
(1976) and Obstfeld and Rogo� (1995). Under trilemma, and in the absence of capital controls, an inward-looking monetary
policy uniquely determines the equilibrium exchange rate. In contrast, market segmentation o�ers the policymaker an addi-
tional instrument in the currency market, as it limits the ability of private agents to o�set the e�ect of o�cial FX interventions.
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Figure 1: Exchange rate policy tradeo�s
Note: The �gure plots the frontiers of output gap and exchange rate volatility, namely menus of (σx, σe) that can be chosen
by monetary policy, in three types of models: (a) classic trilemma models where UIP holds, (b) models with endogenous
UIP deviations driven by exchange rate risk, and (c) models with exogenous UIP (or CIP) shocks. FB corresponds to the �rst
best (or a “Friedman �oat”) with σx = 0 and σe = σq̃ , the volatility of the �rst-best real exchange rate. The line segmented
connecting FB and Peg corresponds to the classic Trilemma constraint when UIP holds. Free Float in models with UIP shocks
features σe that combines macro-fundamental (blue) and �nancial (red and yellow) exchange rate volatility, and the �rst best
is only feasible when FXI o�set �nancial shocks. Dashed indi�erence curves are for the welfare loss function, and Managed
Float is the optimal monetary policy rule in the absence of FXI. See the text for Divine (coincidence) and Mussa Puzzle points.

We begin by showing how an unconstrained joint use of monetary policy and FX interventions
allows the policymaker to implement the �rst-best allocation. Each policy instrument accommodates a
di�erent ine�ciency in the economy — with monetary policy targeting in�ation and closing the output
gap and FXI targeting UIP deviations and eliminating the risk-sharing wedge. The policymaker uses
FXI to shift currency risk away from intermediaries’ balance sheets thus eliminating the intermedia-
tion wedge. However, exchange rate stabilization is not a direct goal of a welfare-maximizing policy.
The optimal policy o�sets liquidity demand shocks for currency but fully accommodates fundamental
macroeconomic shocks to ensure an e�cient expenditure switching. The resulting nominal exchange
rate tracks the frictionless “natural” real exchange rate.

Figure 1 provides an illustration of the policy tradeo� and the optimal policy choice, comparing
our framework with endogenous UIP deviations to two alternative classes of models, namely classic
trilemma models without UIP deviations and alternative models with exogenous �nancial shocks re-
sulting in UIP (or CIP) deviations.2 Speci�cally, the �gure plots the policy tradeo� in the space of output

2The latter class includes models with exogenous UIP shocks (e.g. Devereux and Engel 2002, Kollmann 2005, Farhi and
Werning 2012), convenience yield (e.g. Jiang, Krishnamurthy, and Lustig 2021), and �nancial frictions in the form of balance
sheet constraints (e.g. Gabaix and Maggiori 2015, Fanelli and Straub 2021, Basu, Boz, Gopinath, Roch, and Unsal 2020). In
Itskhoki and Mukhin (2021a), we show that all such models can be equally successful in explaining the general exchange rate
disconnect (i.e., the Free Float point in Figure 1), yet unlike the model with endogenous UIP deviations due to limits to arbitrage
these models cannot readily explain the Mussa facts (see Itskhoki and Mukhin 2021b), essential for the optimal exchange
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gap and nominal exchange rate volatility. The �rst best corresponds to a fully eliminated output gap
and a nominal exchange rate that under sticky prices must accommodate the volatility of the �rst-best
real exchange rate to ensure e�cient expenditure switching. In trilemma models without UIP devia-
tions, a freely �oating exchange rate under inward-looking monetary policy and no FXI achieves just
that, as suggested by Friedman (1953). More generally, when UIP deviations feature in equilibrium, a
laissez-faire �oat results in excessive exchange rate volatility, which re�ects both macro-fundamental
and non-fundamental �nancial volatility, consistent with exchange rate disconnect. In such models,
both free �oats and full pegs are generally suboptimal and the optimal policy requires an additional use
of FXI to o�set �nancial volatility.

Implementing the optimal allocation in the goods and asset markets, in general, requires an uncon-
strained use of both monetary and FX instruments. However, there exists an important special case
when addressing both frictions could be achieved with a nominal exchange rate peg by means of mon-
etary policy alone. We refer to this case as “divine coincidence” in an open economy by analogy with a
closed-economy divine coincidence. Indeed, if the natural real exchange rate that ensures the e�cient
allocation in the goods market is stable, then there is no tradeo� from the point of view of the asset
market. In this case, a �xed nominal exchange rate is consistent with e�cient expenditure switching in
the goods market, and also this eliminates risk in the international �nancial market allowing for fric-
tionless intermediation. Direct nominal exchange rate targeting is favored over in�ation stabilization in
this case as it guarantees a unique e�cient equilibrium. In Figure 1, Divine (coincidence) corresponds
to the situation when σq̃ = 0 and the entire blue area collapses to the origin, making the Peg and FB
(�rst best) coincide.3 While our analysis is consistent with the optimal currency areas logic of Mundell
(1961), it identi�es not only circumstances when the costs of a currency union are low in the goods
market, but also the risk-sharing bene�ts associated with a �xed exchange rate.

Next, we explore circumstances where �nancial interventions are constrained, e.g. due to a non-
negativity requirement for a central bank foreign reserve holdings or a value-at-risk constraint on the
central bank’s balance sheet. In this case, there are two independent policy goals — the output gap and
the risk-sharing wedge — and monetary policy alone cannot implement the optimal allocation. Instead,
optimal policy trades o� the output gap and exchange rate stabilization to reduce UIP violations, putting
more weight on the latter objective in periods with large capital (out)�ows. Managed Float in Figure 1,
or a crawling peg, emerges as the second best policy, consistent with the “fear of �oating” documented
for many developing countries (Calvo and Reinhart 2002). This policy is complemented with both
forward guidance and macroprudential accumulation of FX reserves to relax future and past constraints
on FX interventions: because of the forward-looking nature of capital �ows, future interventions and
commitment to future exchange rate stabilization mitigate today’s distortions.

We also study the use of capital controls and the ability of the government to use its monopoly
power in the currency market to generate rents. When the �nancial sector is o�shore, the policymaker

rate policy analysis. Mussa Puzzle point in Figure 1 illustrates the challenge for models with exogenous �nancial shocks,
where a monetary peg counterfactually absorbs all the �oating exchange rate volatility into in�ation and the output gap.
Propositions 1, 2 and 4 in Section 3 characterize optimal policy corresponding to FB, Divine and Managed Float in the �gure.

3Note that this is the case both in trilemma models and in a model with endogenous UIP deviations, but not in models
with exogenous �nancial shocks that do not disappear under a �xed nominal exchange rate.
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can compete with �nancial intermediaries for rents (international transfers) that emerge from exoge-
nous shifts in currency demand. If capital controls are available, it is possible to extract these rents
without compromising the expenditure switching and risk-sharing goals of the optimal exchange rate
policy. Speci�cally, FXI lean only partially against exogenous shifts in currency demand, leaving non-
zero carry trade returns (UIP deviations) on the table, and capital controls are used to eliminate the
residual risk-sharing wedge for households. A higher exchange rate volatility lowers the elasticity of
currency demand and allows the planner to extract more rents. However, this requires a �exible state-
contingent use of capital control taxes and subsidies which may be infeasible. Without capital controls,
the policymaker can still use FX interventions to implement the frictionless allocation without incur-
ring �nancial losses.

Lastly, we extend our model to a global equilibrium with a continuum of small open economies
and a dominant currency (dollar) used for international borrowing and lending against other national
currencies. We show that the �rst-best non-cooperative FX policy that closes UIP deviations in all
countries implements the globally e�cient allocation. In contrast, in the second-best world with con-
strained FXI, individual countries do not internalize the e�ect of their policies on the global interest
rate r∗ and capital out�ows from constrained economies. We show that international cooperation calls
for strategic complementarity in the use of FXI across countries with a role for central bank FX swap-
lines that allow for Pareto-improved allocations. Similarly, the second-best monetary policy with a
partial peg to the dollar translates into asymmetric spillovers of U.S. monetary policy and generates a
global monetary cycle even when the U.S. accounts for a trivial fraction of global trade.

Our optimal policy results echo many of the themes in Friedman (1953). Discussing the four ways
to achieve equilibrium in the currency market, Milton Friedman famously argues in favor of a �oating
exchange rate and forcefully criticizes capital controls and a nominal peg that distort real allocation in
the economy. At the same time, Friedman characterizes FXI as “feasible and not undesirable” as “it may
be that private speculation is at times destabilizing for reasons that would not lead government specula-
tion to be destabilizing.” This is exactly the mechanism captured by our model. Instead, the di�erences
in our conclusion are quantitative in nature, as Friedman notes that FXI are “largely unnecessary since
private speculative transactions will provide currency demand with only minor movements in exchange
rates”. In other words, the currency supply by intermediaries is su�ciently elastic to accommodate cur-
rency demand shocks without large movements in the exchange rate and UIP deviations. In contrast to
Friedman who wrote his essay at the height of Bretton Woods, we now have ample evidence following
Mussa (1986) that exchange rates are volatile under a free �oating regime and feature signi�cant and
time-varying UIP deviations, suggesting occasional government interventions may be desirable.

Our modeling framework is related to two lines of work. First, our emphasis on the role of demand
for currency in �nancial markets and the modeling of �nancial intermediaries follows the tradition
of Kouri (1983), Driskill and McCa�erty (1987), Dornbusch (1988, Chapter 7) and more recent work by
Jeanne and Rose (2002), Blanchard, Giavazzi, and Sa (2005), Camanho, Hau, and Rey (2022), Gourinchas,
Ray, and Vayanos (2019), Greenwood, Hanson, Stein, and Sunderam (2020). In contrast to these papers,
we embed the �nancial sector into a realistic general equilibrium model, which is a prerequisite for
macroeconomic policy analysis.
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Second, we follow Alvarez, Atkeson, and Kehoe (2009) and Gabaix and Maggiori (2015) in assuming
that asset markets are segmented. However, guided by the evidence from Itskhoki and Mukhin (2021b),
we assume that limits to arbitrage emerge from the risk aversion of intermediaries rather than borrow-
ing constraints or convenience yields, which considerably changes the optimal policy conclusions and
distinguishes our analysis from otherwise closely related work by Basu, Boz, Gopinath, Roch, and Unsal
(2020, henceforth IPF for Integrated Policy Framework) and other normative papers listed below.4 The
idea that demand for currency is endogenous to the exchange rate regime echoes the classical literature
on target zones (Krugman 1991, Svensson 1994) and is in line with the historical evidence from the gold
standard (Eichengreen and Flandreau 1997).

Our policy analysis builds on three literatures. First, our analysis incorporates the expenditure
switching channel of monetary policy under alternative assumptions on the currency of invoicing as
previously studied by Corsetti and Pesenti (2001), Devereux and Engel (2003), Benigno and Benigno
(2003), Gali and Monacelli (2005), Goldberg and Tille (2009), Corsetti, Dedola, and Leduc (2010), Engel
(2011), Egorov and Mukhin (2023). Second, our analysis is related to recent work on the costs and
bene�ts of FX interventions by Jeanne (2012), Amador, Bianchi, Bocola, and Perri (2019), Cavallino
(2019), Fanelli and Straub (2021) and optimal capital controls by Jeanne and Korinek (2010), Bianchi
(2011), Costinot, Lorenzoni, and Werning (2014), Farhi and Werning (2016, 2017), Schmitt-Grohé and
Uribe (2016). Third, our modeling of the �nancial channel of monetary policy in an open economy is
related to the work of Obstfeld and Rogo� (2002), Kollmann (2004), Benigno (2009), Rey (2013), Fanelli
(2017), Kekre and Lenel (2021), Hassan, Mertens, and Zhang (2023), Fornaro (2022), Akinci, Kalemli-
Özcan, and Queralto (2022).

2 Modeling Framework

This section introduces the baseline theoretical framework and derives the optimal policy problem.
Building on Itskhoki and Mukhin (2021b), we choose the ingredients of the model with an eye to the
main empirical properties of exchange rates and intentionally make several strong assumptions to keep
the policy problem as simple as possible. We derive a novel linear-quadratic approximation to the
planner’s problem, which allows us to characterize optimal policies in Section 3. Sections 4 and 5
generalize the setup in several dimensions and consider a number of extensions.

2.1 Setup

We consider a small open economy with tradable and non-tradable goods. There are two frictions
— sticky prices and a segmented �nancial market — that distort the equilibrium allocation, justify
government interventions, and give rise to a policy tradeo�. The policymaker can choose the path of
nominal interest rates and carry out FX interventions in the currency market.

4Our framework agrees with IPF on the �rst-best allocation and its implementation with monetary policy and FXI. How-
ever, the optimal policy away from the �rst best is di�erent, and in particular the results on the optimality of a monetary peg
under divine coincidence and on the second-best managed �oat/crawling peg by means of monetary policy (at the cost of the
output gap) are speci�c to our model of UIP deviations that are endogenous to the equilibrium exchange rate volatility.
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Real sector The households have log-linear preferences over consumption of tradables CTt, non-
tradables CNt and hours worked Lt:

E0

∞∑
t=0

βt
[
γ logCTt + (1− γ)(logCNt − Lt)

]
, (1)

where γ is the expenditure share on the tradable good capturing the openness of the economy. House-
holds receive labor income WtLt, �rm pro�ts Πt, and transfers Tt, and can borrow or lend using a
one-period risk-free home-currency bond Bt:

PTtCTt + PNtCNt +
Bt
Rt

= Bt−1 +WtLt + Πt + Tt,

where Rt is the gross nominal interest rate.
The endowment of tradable goods YTt is exogenous and stochastic generating demand for interna-

tional risk sharing. The prices of tradables are �exible and satisfy the law of one price:5

PTt = EtP ∗Tt,

where P ∗Tt is the international price of the tradable good and Et is the nominal exchange rate in units of
home currency for one unit of foreign currency (i.e., an increase in Et corresponds to a home deprecia-
tion). We assume a stable price level in the foreign country, P ∗Tt = 1, and therefore the home-currency
tradable price tracks the nominal exchange rate, PTt = Et.

Output of non-tradables is endogenous and depends on the labor input and productivity shock:

YNt = AtLt.

Non-tradable prices are permanently sticky at an exogenous level, PNt = 1, and output is demand
determined, CNt = YNt. We relax the assumptions on tradable and non-tradable prices in Section 5.6

Total pro�ts in the economy are given by Πt = PTtYTt + PNtYNt −WtLt.
The equilibrium in the goods sector is characterized by two optimality conditions. Given that

households split their consumption between tradables and non-tradables according to γPNtCNt =

(1 − γ)PTtCTt, and goods prices are PTt = EtP ∗Tt = Et and PNt = 1, the equilibrium expenditure
switching condition is given by:

γ

1− γ
CNt
CTt

=
EtP ∗Tt
PNt

= Et. (2)

The relative demand for goods depends on their relative price, EtP ∗Tt/PNt, which under fully sticky
prices of non-tradables is equal to the nominal exchange rate Et. The optimal consumption-savings

5Exogenous terms of trade due to a homogenous tradable good eliminate the beggar-thy-neighbour policy motive that
typically complicates the normative analysis (see Corsetti and Pesenti 2001) and make international risk sharing depend on
the structure of asset markets despite logarithmic preferences (cf. Cole and Obstfeld 1991).

6We focus on the fully sticky price case as a limiting benchmark which simpli�es the analysis by avoiding an additional
dynamic equation, yet maintains all the qualitative tradeo�s of a more general environment discussed in Section 5.1. By
having price stickiness (or, equivalently, wage stickiness) only in the non-tradable sector, we avoid the need to choose between
PCP/LCP/DCP frameworks, which we analyze in Section 5.2 along with imperfect substitutability between home and foreign
tradables and incomplete exchange rate pass-through into tradable prices.
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decision of households is described by a standard Euler equation:

βRtEt
CNt
CNt+1

= 1, (3)

and depends on the nominal interest rate Rt set by the policymaker. Finally, the optimality condition
for labor supply, CNt = Wt/PNt = Wt, determines the equilibrium nominal wage.

Financial sector While the equilibrium in the goods market is conventional to open-economy sticky-
price models, our analysis deviates from this literature by introducing segmentation in global asset mar-
kets. In particular, we assume that home households have access exclusively to local-currency bonds,
and hence all international capital �ows have to be intermediated by specialized �nancial traders.7

Household demand for the home-currency bond Bt re�ects fundamental macroeconomic forces
and shapes the equilibrium path of net exports and net foreign assets. Additionally, there are three
types of agents that can trade home and foreign currency bonds in the international �nancial market
— the government, noise traders and intermediaries (arbitrageurs) — all residing in the home economy
(see Appendix Figure A1). For these agents who have access to foreign-currency (dollar) saving and
borrowing, the dollar bond is in a perfectly elastic international supply at an exogenous interest rateR∗t .
Section 4 considers extensions that allow for foreign intermediaries and noise traders resulting in cross-
border �nancial income transfers, as well as an endogenize R∗t in a multi-country global economy.

Each period, arbitrageurs choose a zero capital portfolio (Dt, D
∗
t ) such that Dt/Rt = −EtD∗t /R∗t ,

where 1/Rt and 1/R∗t are prices of the two bonds. The dollar net income of arbitrageurs from such
a carry trade is given by πD∗t+1 = D∗t − Dt/Et = R̃∗t+1 ·

D∗t
R∗t

, where R̃∗t+1 = R∗t − Rt EtEt+1
is a one-

period return on one dollar holding of a carry trade portfolio. This income is transferred lump-sum to
households.

Arbitrageurs choose their portfolio to maximize min-variance preferences,Et
[
Θt+1π

D∗
t+1

]
−ω

2 vart
(
πD∗t+1

)
,

where Θt+1 = β CTt
CTt+1

P ∗Tt
P ∗Tt+1

is the stochastic discount factor (SDF) of home households and ω is the
risk aversion parameter of arbitrageurs. The second term in the objective function is the additional
risk penalty capturing the intermediation friction that creates limits to arbitrage. The optimal portfolio
choice satis�es:

D∗t
R∗t

=
Et
[
Θt+1R̃

∗
t+1

]
ωσ2

t

, (4)

where σ2
t ≡ vart(R̃

∗
t+1) = R2

t · vart(Et/Et+1) is a measure of the nominal exchange rate volatility. As
ω → 0, the risk-absorption capacity of arbitrageurs increases unboundedly, and the uncovered interest
rate parity (UIP) holds in equilibrium, Et[Θt+1R̃

∗
t+1] = 0.8

7Similarly to the assumption of fully rigid prices, complete segmentation of asset markets substantially simpli�es our
analysis by limiting the number of dynamic equations. Yet, our main insights remain valid under a more realistic form of
segmentation where households can trade foreign currency bonds subject to additional transaction costs and gradual portfolio
adjustment (see Aiyagari and Gertler 1999, Bacchetta, Tieche, and Van Wincoop 2020, Fukui, Nakamura, and Steinsson 2023).

8More precisely, in this limit, the household SDF Θt+1 prices the exchange rate risk, and the expected return on the carry
trade is given by EtR̃∗t+1 = R∗t · covt(Θt+1, Et/Et+1), a property of the optimal risk sharing. Note that ω > 0, which
gives rise to frictional risk premium, shall not be interpreted as greater risk aversion of arbitrageurs relative to households,
as households cannot/do not hold exchange rate risk in equilibrium, while arbitrageurs hold it in a concentrated way.
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Noise traders also hold a zero capital portfolio (Nt, N
∗
t ) of home and foreign-currency bonds, such

thatNt/Rt = −EtN∗t /R∗t , andN∗t is an exogenous liquidity demand shock for foreign currency that is
uncorrelated with macroeconomic fundamentals. A positive N∗t means that noise traders short home-
currency bonds to buy foreign-currency bonds, and vice versa. Noise traders’ net income and losses
are transferred to the households. Although di�cult to measure in the data, these shocks are necessary
to match the disconnect properties of the exchange rate. Importantly, our normative results do not
require that N∗t is pure noise, and go through when one assumes that currency demand is driven by
household preference shocks for foreign-currency bonds (Itskhoki and Mukhin 2022).

Finally, the government holds a portfolio (Ft, F
∗
t ) of home- and foreign-currency bonds with the

net value of the portfolio given by Ft/Rt + EtF ∗t /R∗t . Changes in Ft and F ∗t correspond to open
market operations of the government. The net government income and losses are also transferred to
the households. Therefore, net transfers of income to the households from �nancial transactions of the
government, noise traders and arbitrageurs are equal to:

Tt =

(
Ft−1 −

Ft
Rt

)
+ Et

(
F ∗t−1 −

F ∗t
R∗t

)
+ EtR̃∗t ·

N∗t−1 +D∗t−1

R∗t−1

.

Financial market clearing requires that the home-currency bond positions of all four types of agents
balance out, Bt + Nt + Dt + Ft = 0. We de�ne B∗t to be the net foreign asset (NFA) position of the
home country, expressed in foreign currency, such that:

B∗t
R∗t

=
1

Et
Bt + Ft
Rt

+
F ∗t
R∗t

.

Thus, home NFA is the value of the combined position of home households and the government, as the
remaining agents in the �nancial market hold zero value portfolios, albeit exposed to currency risk.

Using this de�nition and the zero value portfolios of noise traders and arbitrageurs, we rewrite the
�nancial market clearing condition as:

B∗t = F ∗t +N∗t +D∗t . (5)

In other words, the NFA position of the country equals the combined foreign-currency bond position
in the �nancial market. That is, currency market equilibrium requires that currency supply B∗t from
accumulated NFA equals aggregate currency demand, F ∗t +N∗t +D∗t .9

Equilibrium Two international conditions — the country budget constraint and international risk
sharing — complete the description of the equilibrium system. To derive the country budget constraint,
we substitute the expressions for pro�ts Πt and �nancial transfers Tt into the household budget con-
straint. This yields:

B∗t
R∗t
−B∗t−1 = YTt − CTt, (6)

9SinceB∗t ,N∗t ,D∗t and possiblyF ∗t can take positive and negative values, who supplies and demands currency in the mar-
ket can change. Positive (negative) values ofN∗t ,D∗t and F ∗t correspond to currency demand (supply), and vice versa forB∗t .
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where the right-hand side is net exports expressed in dollars (or in terms of tradables, since P ∗Tt = 1).
Intuitively, trade surpluses lead to the accumulation of net foreign assets — a macro-fundamental source
of currency supply to the home market.

To derive the international risk-sharing condition, we combine household optimality (2) and (3)
with the equilibrium conditions in the �nancial market (4) and (5). This results in:10

βR∗tEt
CTt
CTt+1

= 1 + ωσ2
t

B∗t −N∗t − F ∗t
R∗t

, where σ2
t = R2

t · vart

( Et
Et+1

)
. (7)

If households had direct access to dollar bonds, then a conventional Euler equation βR∗tEt
CTt
CTt+1

= 1

would hold. Instead, household positions need to be intermediated by the �nancial sector which charges
a risk premium — a risk-sharing wedge. This risk premium depends both on the size of the currency
exposure of arbitrageurs, D∗t = B∗t − F ∗t −N∗t , and the price of risk ωσ2

t per dollar of the exposure.
Currency out�ows — due to both fundamental (B∗t < 0) and non-fundamental (N∗t > 0) reasons —

require intermediation (D∗t < 0) and expose arbitrageurs to currency depreciation risk, resulting in an
equilibrium risk premium and a risk-sharing wedge.11 Greater exchange rate volatility σ2

t increases the
price of risk and the resulting risk-sharing wedge for given gross currency positions. A policymaker
can intervene either by reducing expected exchange rate volatility or by absorbing the currency risk
into the government balance sheet with FX interventions (F ∗t ↓), as we study in the next section.

Finally, we de�ne the equilibrium in this economy. Given the stochastic path of exogenous shocks
{At, YTt, R∗t , N∗t }, sticky non-tradable prices PNt ≡ 1, and the path of policies {Rt, Ft, F ∗t }, an equi-
librium vector {CNt, CTt, B∗t , D∗t , Et} and the implied {σ2

t } solve the dynamic system (2)–(7) with the
initial condition B∗−1 and the transversality condition limT→∞B

∗
T /
∏T
t=0R

∗
t = 0.12 Note that Ricar-

dian equivalence does not hold vis-à-vis foreign currency position F ∗t , as households cannot directly
hold foreign currency bonds. As a result, both the country’s NFA position B∗t and the arbitrageurs’
currency exposure D∗t = B∗t −N∗t − F ∗t are endogenous state variables of the equilibrium system. In
contrast, the model features Ricardian equivalence for home-currency bonds — a change in Ft merely
crowds out private Bt, and hence it is not a state variable for the equilibrium allocation.

10Household Euler equation (3) together with the expenditure allocation (2) implyEt{Θt+1RtEt/Et+1} = 1. Arbitrageurs’
portfolio choice (4) implies Et{Θt+1[R∗t − RtEt/Et+1]} = ωσ2

tD
∗
t /R

∗
t , which is the frictional UIP deviation. Adding the

two expressions together to eliminate Rt and using the �nancial market clearing (5) to substitute for D∗t results in (7). Note
from this derivation that the risk-sharing wedge is equal to the frictional UIP deviation, and they both disappear as ωσ2

t → 0.
11Frictional risk premium takes the form of a UIP shock that is accommodated by a jump depreciation followed by an

expected appreciation, or vice versa. This distorts the path of tradable prices and tradable consumption, resulting in subopti-
mal risk sharing. While our analysis focuses on the distortion to consumption, similar considerations apply in a model with
investment and the associated frictional risk premium that distorts the required rate of return on investment away from R∗t .

12Note that (4) is redundant given (7) and (5). Hence, we have four independent equilibrium conditions, (2)–(3) and (6)–(7),
to solve for four endogenous variables {CNt, CTt, B∗t , Et}, and a side equation (5) to solve for D∗t . The other endogenous
variables {Wt, Lt, YNt, Bt} are recovered from static equilibrium conditions outlined above. Speci�cally, from the goods
market clearing and labor supply YNt = CNt and Wt = CNt; from production function Lt = YNt/At; and Bt can be
backed out from (B∗t , F

∗
t , Ft) given the de�nition of NFA B∗t .
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2.2 Policy problem

In our baseline analysis, we focus on the Ramsey problem of choosing a sequence of government poli-
cies that maximize welfare under commitment. Given the equilibrium de�nition above, the government
chooses a feasible path of monetary policy and FX interventions, {Rt, F ∗t }, that maximizes household
welfare (1).13 We set up the exact non-linear policy problem in Appendix A1, which allows for a charac-
terization of the �rst-best allocation and the policies that decentralize it. To make progress for the main
cases of interest, where the �rst-best allocation is not feasible given the available policy instruments,
we work with a linear-quadratic approximation to the policy problem around the �rst-best allocation.

In this section, we derive the approximate policy problem. In doing so, we address two major chal-
lenges associated with the transition to a linear-quadratic environment. The �rst challenge relates to
the quadratic approximation of the welfare function in an open economy, and in particular where the
best possible risk sharing is not full insurance, as the international �nancial market is incomplete and
features risk free bonds only. The second challenge arises due to the risk-sharing friction driven by a
time-varying risk premium in the currency market that disappears in conventional linear approxima-
tions. Our approach ensures that the risk-sharing friction remains in the linear-quadratic environment,
preserving the key policy tradeo� between output gap stabilization and international risk sharing.

First-best allocation The �rst-best allocation is the path of tradable and non-tradable consump-
tion and labor, which we denote with tildes {C̃Tt, C̃Nt, L̃t}, that maximizes the household welfare
in (1) subject to the country budget constraint (6) and the non-tradable production possibility fron-
tier CNt = Yt = AtLt, taking as given the path of shocks {YTt, At, R∗t } and the initial net foreign
assets B∗−1, as well as the No-Ponzi-Game Condition (NPGC) for B∗∞. This problem abstracts from
both the sticky price friction in the goods market and the intermediation friction in the �nancial mar-
ket. Furthermore, the local planner takes as given the structure of the international �nancial market
which provides a perfectly elastic supply of dollar risk-free bonds at an exogenous interest rate R∗t .

Given the log-linear utility (1), the �rst-best allocation features a constant labor supply L̃t = 1

yielding C̃Nt = At, and a path of C̃Tt that solves a frictionless Euler equation βR∗tEt{CTt/CTt+1} = 1

together with the country budget constraint (6). Therefore, C̃Tt is a function of shocks {YTt, R∗t } and
the initial net foreign assetsB∗−1. The �rst-best path of NFA satis�es the country budget constraint (6),
that is B̃∗t = R∗t (B̃

∗
t−1 + YTt − C̃Tt).

With fully sticky non-tradable prices, the decentralization of the �rst-best allocation involves a path
of nominal wages W̃t = At to ensure the �rst-best labor supply, and a path of the nominal exchange rate

Ẽt = Q̃t =
γ

1− γ
C̃Nt

C̃Tt
(8)

13The government does not take the welfare of arbitrageurs and noise traders into account, as these agents pass on all their
�nancial incomes and losses to the households. Yet, their behavior — namely, exogenous currency demand of noise traders
and endogenous inelastic currency supply by arbitrageurs — a�ects the equilibrium allocation in the �nancial market via
a wedge in the risk-sharing condition (7). This is akin to the behavior of a monopolist in the goods market that creates a
markup wedge and passes on all pro�ts back to the households.
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to ensure the �rst-best relative price and expenditure allocation between tradables and non-tradables
in (2). Equation (8) de�nes Q̃t which we refer to as the �rst-best, or natural, real exchange rate. It is the
value of international relative prices that ensures the optimal expenditure allocation between tradables
and non-tradables in our economy.14

Second-order approximation to the welfare function We evaluate welfare losses due to a depar-
ture of the equilibrium allocation from the �rst best. To do so, we derive a second-order approximation
to the objective function in (1) around a non-stochastic steady state and evaluate the welfare loss rela-
tive to the �rst-best allocation {C̃Tt, C̃Nt, L̃t} characterized above.

To this end, we introduce two wedges central to our analysis — the output gap xt and the risk-
sharing wedge zt — de�ned by:

xt ≡ logCNt − log C̃Nt and zt ≡ logCTt − log C̃Tt. (9)

The output gap xt emerges as a result of sticky non-tradable prices, and it measures the gap in non-
tradable consumption relative to C̃Nt = At. This also corresponds to the departure of labor supply
Lt = CNt/At from L̃t = 1. The risk-sharing wedge zt is the result of a violation of the �rst-best risk
sharing. Speci�cally, an intermediation wedge in (7) causes a risk-sharing wedge. Note that all feasible
paths of CTt, and hence zt, must still satisfy the country budget constraint (6).

To make the analysis tractable, the innovation of our approach is to focus only on budget-feasible al-
locations {CTt, CNt, Lt} that satisfy the production possibilities frontier for non-tradables,CNt = AtLt,
and the country budget constraint for tradables, that is (6) together with the NPGC forB∗∞ and givenB∗−1.
For every such allocation that results in wedges xt and zt de�ned in (9), the welfare loss relative to the
�rst best is given by:15

Loss =
1

2
E0

∞∑
t=0

βt
[
γz2

t + (1− γ)x2
t

]
, (10)

where the weight on the risk-sharing wedge equals γ, a measure of the degree of openness of the econ-
omy. We provide a formal derivation of (10) in Appendix A2 where we introduce a novel Lagrangian-
based method to derive a second-order welfare loss function for any feasible allocation relative to the
�rst best, which by construction features no �rst-order terms.

The path of the risk-sharing wedge zt must be consistent with the budget constraint (6), which in
deviations from the �rst best is given by:

βb∗t − b∗t−1 = −zt, (11)

where b∗t ≡ (B∗t−B̃∗t )/ȲT is the deviation of NFA from its �rst-best path scaled by the steady-state level
14Formally, the real exchange rate is EtP ∗t /Pt = E1−γ

t (with P ∗t = P ∗Tt = 1 and Pt = P γTtP
1−γ
Nt = Eγt ), while

EtP ∗Tt/PNt = Et is the relative price of non-tradables; the two are proportional to each other in logs. More generally,
in every economy, one can de�ne a relevant concept for the �rst-best real exchange rate that, given goods market clearing
condition, ensures an e�cient expenditure allocation between home and foreign goods.

15All our approximations are around a steady state with B̄∗ = F̄ ∗ = N̄∗ = 0, R̄ = R̄∗ = 1/β; with tradable endow-
ment ȲT , non-tradable productivity Ā, and exchange rate Ē = γ

1−γ
Ā
ȲT

, resulting in L̄ = 1, C̄N = Ā, C̄T = ȲT , NX = 0.
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of tradable output ȲT , and βR̄∗ = 1 in steady state. The initial condition is b∗−1 = 0 (as B̃∗−1 = B∗−1),
the NPGC is limt→∞ β

tb∗t = 0, and thus zt = b∗t = 0 for all t ≥ 0 is a feasible allocation corresponding
to the �rst-best risk sharing. Note that zt acts simultaneously as the risk-sharing wedge and as the
deviation of net exports from their �rst-best path, zt = −(nxt − ñxt) where ñxt ≡ (YTt − C̃Tt)/ȲT .
Cumulated deviations of net exports zt result in deviations of NFA b∗t , as summarized by (11).

First-order approximation to the equilibrium system Minimizing the welfare loss (10) subject
to the budget constraint (11) alone poses no policy tradeo� as xt = zt = 0 for all t ≥ 0 is a budget-
feasible allocation. In addition to the budget constraint (11), the �rst-order approximation to the exact
equilibrium system (2)–(7) involves two additional conditions — one that characterizes equilibrium in
the goods market and the other that characterizes equilibrium in the �nancial market.

In the goods market, the expenditure allocation condition (2) can be written in log deviations as:

et = q̃t + xt − zt, (12)

where et = log Et and q̃t = log Q̃t is the �rst-best real exchange rate de�ned in (8), and the two
wedges xt and zt as de�ned in (9). Given sticky prices, the nominal exchange rate must accommodate
movements in the �rst-best real exchange q̃t, otherwise one or both wedges open up. Indeed, if the
relative price of non-tradables is o� its �rst-best level, either tradable or non-tradable consumption
(or both) must deviate from their �rst-best levels as well. Equation (12) captures the locus of possible
equilibrium allocations in the goods market shaped by expenditure switching between tradables and
non-tradables.16

The remaining condition characterizes equilibrium in the �nancial (currency) market. The risk-
sharing friction emphasized in (7) corresponds to the risk premium charged by arbitrageurs for inter-
mediating currency trades and holding the associated exchange rate risk. In conventional linear ap-
proximations, risk premia go to zero with second moments such as σ2

t . We consider an alternative point
of approximation in which risk premia remain �rst-order objects and, hence, a�ect �rst-order dynamics
of the equilibrium system. To this end, we let the risk aversion parameter ω to increase as σ2

t decreases,
keeping the price of risk ωσ2

t non-zero in the limit. We provide formal details in Appendix A2, where
we show that our �rst-order approximation to (7) results in:

Et∆zt+1 = ω̄σ̄2
t (n
∗
t + f∗t − b∗t ) with σ̄2

t = vart(et+1), (13)

where ω̄ ≡ ωȲT /β, f∗t ≡ F ∗t /ȲT are FXI scaled by tradable output, and n∗t ≡ (N∗t − B̃∗t )/ȲT is
a combined exogenous currency demand shock.17 Like a conventional �rst-order approximation, our
approximation scales linearly with the size of exogenous shocks that drive n∗t in (13) and q̃t in (12).
However, due to an unconventional point of approximation in which the risk-bearing capacity of the

16Rewriting (12) as xt = zt + (et− q̃t) one can interpret this condition as follows: a capital out�ow shock zt < 0 must be
accommodated by either a depreciation et > q̃t or an output gap xt < 0 if the exchange rate fails to adjust.

17Note that n∗t features both noise trader demand for foreign currency (N∗t > 0) net of supply of foreign currency accu-
mulated from the �rst-best path of net exports (that is, NFA B̃∗t > 0); of course, these variables can take both positive and
negative values with corresponding interpretations.
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�nancial sector 1/ω → 0, the equilibrium system is non-linear in shocks (and hence state variables),
and in particular features time-varying volatility that a�ects �rst-order equilibrium dynamics.

Condition (13), together with the budget constraint (11), characterizes the equilibrium path of trad-
able consumption relative to its �rst-best level, zt ≡ log(CTt/C̃Tt), from the point of view of house-
holds. Alternatively, it also determines the path of UIP deviations from the point of view of the �nancial
market (recall conditions (4) and (5)). Indeed, we have that the UIP deviation equals:

it − i∗t − Et∆et+1 = Et∆zt+1, (14)

where it− i∗t = log(Rt/R
∗
t ).18 Therefore, the risk-sharing wedge in (13), ω̄σ̄2

t (n
∗
t +f∗t − b∗t ), is also the

frictional UIP wedge. It is a �rst-order object that comoves with the intermediated demand for currency,
n∗t + f∗t − b∗t , and with the unit price of the exchange rate risk, ω̄σ̄2

t . Thus, variation in the conditional
exchange rate volatility σ̄2

t is both an equilibrium outcome and has a direct �rst-order feedback into
equilibrium dynamics.

In Appendix A2, we prove two additional results. First, the dynamic system (11)–(13) provides
an accurate �rst-order approximation to the exact equilibrium dynamics. That is, taking the path of
exogenous shocks {q̃t, n∗t } and policies {xt, f∗t }, this system characterizes the path of endogenous
equilibrium outcomes {zt, b∗t , et, σ̄2

t }. Note that we take the output gap xt as the policy variable since
it is directly controlled by the monetary policy instrument it. Second, we prove that minimizing the
second-order welfare loss in (10) with respect to {xt, f∗t , zt, b∗t , et} and subject to the linearized equi-
librium system (11)–(13) results in a �rst-order accurate description of the optimal policies in the exact
non-linear problem. While the equilibrium system is non-linear in the path of shocks and state variables
due to the presence of σ̄2

t in (13), the policy problem scales proportionally with the general magnitude
of shocks, and in this narrow sense one may refer to this policy problem as linear-quadratic.19

Our approach to approximation combines analytical tractability of a �rst-order approximation with
the ability to match the equilibrium size and dynamics of risk premia, which allows us to study the
co-dynamics of macroeconomic and �nancial variables and their interaction in shaping the optimal
policies. Alternative approaches include a full non-linear solution and a higher-order approximation.
We expect these approaches to yield comparable conclusions, as long as they also match the size and
dynamic properties of the risk premium, which is quantitatively large and consequential for macroe-
conomic allocations. At the same time, exact methods are non-analytical and computationally costly
in our optimal policy environment that, as we show below, requires commitment and dynamic follow-
through on policy promises, which increases the size of the state space.

18From the frictionless international Euler equation, i∗t = log(R∗t /R̄
∗) = Et∆c̃Tt+1. The home Euler equation (3) together

with (2), in turn, implies it = log(Rt/R̄) = Et{∆cTt+1 + ∆et+1}. Subtracting one from the other, and using the fact that
zt ≡ cTt − c̃Tt, yields the UIP expression in the text. Note also that the equilibrium path of the local interest rate can be
recovered from (3) as it = r̃t + Et∆xt+1, where xt = cNt − at and r̃t = Et∆at+1 is the natural real interest rate.

19Formally, we let ν scale all shocks {At, YTt, R∗t , N∗t } in the exact non-linear economy with 1/ω scaled by ν2 to keep the
unit price of risk ωσ2

t stable. Then, the linearized system (11)–(13) characterizes the �rst-order component of the non-linear
system, which scales proportionally with ν, while the welfare loss in (10) scales proportionally with ν2. The equilibrium price
of risk ωσ2

t and the optimal policy lean (δt in Theorem 1 below) do not scale with ν (are zero order in ν), but are generally
time-varying. For related but di�erent approaches to approximation see Judd and Guu (2001), Hansen and Sargent (2011),
Hansen and Miao (2018), Bhandari, Evans, Golosov, and Sargent (2017), Caballero and Farhi (2018), Caramp and Silva (2023).
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3 Optimal Policies

Given the results in Section 2.2, we restate here the baseline Ramsey policy problem (10)–(13) of a
small-open economy policymaker in deviations from the �rst-best allocation:

min
{xt,f∗t ,zt,et,b∗t ,σ̄2

t }

1

2
E0

∑∞

t=0
βt
[
γz2

t + (1− γ)x2
t

]
(15)

subject to βb∗t = b∗t−1 − zt,

et = q̃t + xt − zt
Et∆zt+1 = ω̄σ̄2

t (n
∗
t + f∗t − b∗t ) with σ̄2

t = vart(et+1),

and potential constraints on FXI f∗t ∈ Ft, the initial condition b∗−1 = 0 and the transversality condition
limt→∞ β

tbt = 0. The policymaker directly controls the path of the output gap and FXI, {xt, f∗t }. The
path of policies may be restricted by additional constraints f∗t ∈ Ft, e.g. a non-negativity constraint
on FX reserves f∗t ≥ 0 or a value-at-risk constraint σ̄t · |f∗t | ≤ ᾱ.

All exogenous shocks a�ecting equilibrium dynamics are summarized by two variables — the nat-
ural (�rst-best) real exchange rate q̃t de�ned in (12) and the exogenous net currency demand shock n∗t
de�ned in (13). In particular, q̃t is a su�cient statistic for all macroeconomic shocks {At, YTt, R∗t }
that shape the �rst-best path of tradable and non-tradable consumption. In turn, n∗t summarizes cur-
rency demand shocks of noise traders N∗t and households B̃∗t , with the latter shaped by the path of
the �rst-best ÑXt ≡ YTt − C̃Tt. Departures from the �rst-best path of tradable consumption result
in risk-sharing wedges zt ≡ log(CTt/C̃Tt), which via (11) lead to deviations of NFA b∗t that also feed
back via (13) as an additional source of endogenous currency supply (or demand, if negative).

The goal of the policy (15) is to minimize deviations from the �rst-best allocation — namely, elimi-
nate to the extent possible the output gap xt and the risk-sharing wedge zt, with the relative weight on
the latter given by the openness of the economy γ. Policies shape the equilibrium path of the exchange
rate et, and thus its conditional volatility σ̄2

t , which in turn a�ects the dynamics of the equilibrium
system via (13). We note that a particular level or volatility of the exchange rate is not a policy goal in
itself. Nonetheless, the exchange rate et emerges as the key equilibrium variable linking the �nancial
and the goods markets, putting it at the center of the policy tradeo�. When prices are sticky, move-
ments in the nominal exchange rate are necessary to accommodate the adjustment of relative prices
in the goods market (12). However, volatility of the exchange rate is also a source of the risk-sharing
wedge in the �nancial market with imperfect intermediation (13).20

Relaxed Trilemma An important feature of the model is that the planner can sidestep the standard
trade-o� between an independent monetary policy and a managed exchange rate. Even in the absence
of capital controls, the government can choose the path of the output gap xt with an inward-looking in-

20Formally, if monetary policy stabilizes the output gap, xt = 0, then from (12) the nominal exchange rate must equal
et = q̃t − zt. This, in general, results in σ̄2

t = vart(et+1) > 0, and hence a non-zero risk-sharing wedge zt 6= 0 from (13).
Conversely, optimal risk sharing zt = 0 can only be achieved with σ2

t = 0 in the absence of FX interventions (f∗t = 0),
which in turn requires et = q̃t + xt = 0, and thus in general a non-zero output gap, xt = −q̃t.
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terest rate policy (e.g., ensure xt = 0), and simultaneously manipulate the path of the exchange rate via
sterilized interventions in the currency market (by means of f∗t in (13)). This result does not contradict
the trilemma: FX interventions have real e�ects because market segmentation limits capital mobility
and does not allow households to undo the open market operations of the central bank. As a result,
the policymaker can move exchange rate risk between balance sheets of arbitrageurs and households,
and thus change the equilibrium outcome in the currency market (cf. Wallace 1981, Silva 2016, Kekre
and Lenel 2022).21 Similarly to how nominal rigidities allow monetary policy to a�ect real outcomes,
intermediation frictions give rise to an additional policy instrument f∗t in (13). Note also that FX re-
serves are not essential for interventions as the same outcomes can be achieved using FX derivatives
to absorb risk from the balance sheet of market participants. This result is consistent with a wide use
of instruments such as currency swaps in central bank interventions (Patel and Cavallino 2019).

By this logic, the central bank can peg the nominal exchange rate in two di�erent ways — using
either monetary policy or FX interventions, a�ecting et in (12) by means of xt and zt, repsectively. The
policy problem (15) identi�es the costs and bene�ts associated with each of these implementations. On
the one hand, monetary policy has the advantage that there are no restrictions on the implementable
paths of the exchange rate — however, this comes at a cost of the output gap xt. Unless prices are fully
�exible, a monetary peg drives a wedge between the real exchange rate and its natural level q̃t, resulting
in suboptimal expenditure switching in the goods market (cf. “divine coincidence” below).

On the other hand, FX interventions can be used to manipulate the path of the exchange rate without
any output gap side e�ects. However, there are important limits on the possible paths of the exchange
rate that can be implemented with FXI. First, for a given monetary policy, FX interventions a�ect the
nominal exchange rate by changing the real exchange rate, net exports and net foreign asset dynamics,
via zt in (11)–(13). Therefore, while FXI can temporarily alter the dynamics of the exchange rate, it
is, for example, impossible to use them to generate a permanent appreciation, as it would result in a
permanent trade de�cit.22 Second, FXI become entirely ine�ective when monetary policy fully (and
credibly) stabilizes the nominal exchange rate, et = ē and hence σ̄2

t = 0 in (13), bringing back the
classic trilemma constraint (corresponding to the Peg point in Figure 1). This is the case because the
currency supply by arbitrageurs becomes perfectly elastic in the absence of exchange rate risk, and they
fully neutralize the e�ects of open market operations on the exchange rate. A continuous version of
this result is that ever-increasing FX interventions are necessary to a�ect the exchange rate as currency
demand becomes more elastic (ω̄σ̄2

t → 0).

Optimalmonetary policy We introduce here a general characterization of optimal monetary policy
for any given path of FX interventions, which nests as special cases the speci�c results that we consider

21It is the presence of a non-zero price of currency-holding risk, ω̄σ̄2
t > 0 in (13), that relaxes the trilemma constraint on

FXI and allows FXI to a�ect the equilibrium currency risk premium and thus the exchange rate.
22What happens when a policymaker attempts to �x the exchange rate at a level stronger than what is consistent with a

long-run steady state, that is ē < q̃ in (12)? Statically, it can either result in a negative output gap, x < 0, or a positive risk-
sharing wedge, z > 0 (i.e., excess tradable consumption). However, the latter is inconsistent with the intertemporal budget
constraint (11) with NFA b∗t exploding to negative in�nity. Therefore, unless the monetary authority permits a negative output
gap, an equilibrium with ē < q̃ and z > 0 can be sustained only temporarily, until a run on the government FX reserves (cf.
Krugman 1979). Since targeting z > 0 is not part of an optimal policy pro�le, we do not explore this case further.
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in turn in Sections 3.1–3.3. We prove in Appendix A3 that the solution to the policy problem (15)
involves the following optimality condition:

Theorem 1 For any given path of FX interventions {f∗t }, the Ramsey optimal monetary policy sets the

path of the output gap to satisfy Etxt+1 = 0 and:

xt+1 = −δt · (et+1 − Etet+1) with δt =
2γω̄

1− γ
µt(n

∗
t + f∗t − b∗t ), (16)

where δt is the intensity of the monetary policy lean against exchange rate surprises, et+1 − Etet+1,

and µt is the Lagrange multiplier on the risk-sharing constraint (13).

The optimality condition (16) connects the optimal path of monetary policy, summarized by the
path of the output gap {xt+1}, with three properties of the exchange rate and the currency market:

(i) exchange rate surprises, et+1 − Etet+1;

(ii) capital out�ows, or currency demand, n∗t + f∗t − b∗t ;23

(iii) departures from the �rst-best risk sharing and UIP, Et∆zt+1 6= 0, as captured by the sequence
of respective Lagrange multipliers µt on the risk-sharing constraint (13).

It is the interaction of these three features that determines the optimal monetary policy response, em-
phasizing already the role of non-linearity in the optimal exchange rate analysis captured by our ap-
proximation approach.

The policy lean δt in (16) corresponds to a free �oat when δt = 0, a partial peg (or a managed �oat)
when δt > 0, or a full peg in the limit of δt → ∞.24 In Figure 1, as δt increases from 0 to ∞, the
equilibrium outcomes trace the entire red policy frontier from Free Float to Peg. A free �oat is optimal
in the limit of a closed economy or a frictionless �nancial market. Our focus is on an open economy
(γ > 0) with a frictional �nancial intermediation (ω̄ > 0) where, in general, according to (16), optimal
monetary policy responds to exchange rate surprises and, hence, deviates from the exclusive inward-
looking goal of in�ation and output gap stabilization (xt+1 ≡ 0). Speci�cally, the output gap in each
period is eliminated on average, Etxt+1 = 0, but generally not state-by-state. In what follows, we �rst
focus on two cases where the output gap is fully stabilized, xt+1 ≡ 0, either because capital out�ows
are fully accommodated with FXI, or when a �xed exchange rate is optimal by “divine coincidence”.
Then we consider the general case that can be described as the optimal crawling peg (or a dirty �oat),
whereby optimal monetary policy compromises full output gap stabilization to smooth out exchange
rate surprises.

3.1 Unconstrained optimal policy

When both policy instruments — monetary policy that controls the path of xt and FXI f∗t — are available
and unconstrained, the �rst-best allocation is feasible and, thus, is implemented by the optimal policy.

23Note that a (gross) currency demand shock n∗t > 0, unaccommodated with FXI, results in a (net) capital out�ow, zt < 0,
at least when ω̄σ̄2

t > 0. Therefore, we occasionally refer to n∗t as capital out�ow shocks.
24Using (12), we can rewrite (16) as xt+1 = − δt

1+δt

[
q̃t+1 − zt+1 − Et(q̃t+1 − zt+1)

]
, and in the limit of a full peg,

xt+1 o�sets one-for-one all exchange rate surprises that arise from q̃t+1 and zt+1.
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Indeed, this corresponds to the special case of Theorem 1 where FXI ensure n∗t + f∗t − b∗t = 0 in (16),
which both results in zt = b∗t = 0 from (11)–(13) and renders optimal an inward-looking monetary
policy δt = 0 that eliminates the output gap xt = 0.25

Proposition 1 If both policy instruments are available and unconstrained, the optimal policy fully elim-

inates both wedges, the output gap xt = 0 and the risk-sharing wedge zt = 0, by targeting the output

gap with monetary policy (δt = 0) and demand for currency with FX interventions (ft = −n∗t ). The

nominal exchange rate varies with the natural real exchange rate, et = q̃t, with conditional volatility

σ̄2
t = vart(q̃t+1). This solution is unique, time consistent, and its implementation requires no commitment.

Although the fact that two policy instruments are su�cient to implement the �rst-best allocation in
the presence of two frictions is perhaps not surprising, the proposition shows that there is a one-to-one
mapping between instruments and optimal targets (cf. Mundell 1962).26 In particular, monetary policy
closes the output gap xt = 0 and stabilizes producer prices, while optimal FX interventions eliminate
frictional UIP deviations, it − i∗t − Et∆et+1 = Et∆zt+1 = 0, and thus close the risk-sharing wedge
zt = 0. Crucially, neither policy instrument targets the exchange rate directly, nor fully stabilizes it.
Instead, optimal policy ensures xt = zt = 0, which in turn implies that the nominal exchange rate
tracks the natural real exchange rate, et = q̃t, and hence generally σ̄2

t = vart(∆q̃t+1) > 0. In Figure 1,
this corresponds to the First Best, or a Friedman �oat, with inward-looking monetary policy (σx = 0)
and with �nancial volatility (the red region) eliminated with FXI (σe = σq̃).

The proposition also provides a complementary characterization of the optimal policy in terms of
responses to di�erent types of shocks. Using the language of CGG, FX interventions o�set currency
demand shocks f∗t = b∗t − n∗t = −n∗t , as b∗t = 0 in the �rst best, while allowing the exchange rate to
accommodate fundamental macroeconomic shocks {At, YTt, R∗t } that drive the natural real exchange
rate q̃t. To the extent �nancial intermediation is frictional and results in risk-sharing wedges, FX inter-
ventions should step in to eliminate the associated UIP deviations. In practice, this means providing FX
liquidity to the market to o�set currency demand shocks, eliminating the need for costly intermediation
by absorbing the exchange rate risk exposure from arbitrageurs’ and into the government balance sheet
— a version of the Friedman (1969) rule.27 The fact that interventions o�set liquidity shocks state-by-
state and are independent of expectations about future outcomes explains why the optimal policy is
time consistent and does not require commitment on the part of the government.

An important feature of this setup is that it allows us to distinguish between UIP and CIP deviations,
and to show that optimal policy should target the former. This contrasts with the conclusions of the pre-
vious literature where the limits to arbitrage arise due to �nancially-constrained arbitrageurs and CIP
wedges are the only source of UIP deviations (Fanelli and Straub 2021, IPF). This di�erence is important

25Proposition 1, as well as Proposition 2 below, holds without approximation in the exact policy problem, as we show in
Appendix A1. This is because the exact �rst-best allocation is feasible when the two policy instruments are available and
unconstrained; similarly, it is feasible with a single monetary policy tool under the “divine coincidence” introduced below.

26Another notable feature of this result is that capital controls are not needed for implementation, as FX interventions are
su�cient to achieve the �rst best allocation when combined with the optimal monetary policy (see Section 4.1).

27This result relies on two assumptions, namely the lack of opportunity costs of reserves (as they earn the market rate
of return R∗t ) and no advantage of the �nancial sector in intermediation of capital �ows relative to the policymaker. In the
remainder of the analysis, we relax the �rst assumption by introducing binding constraints on the path of reserves, f∗t ∈ Ft.
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from a practical perspective given that, in the data, UIP deviations are an order of magnitude larger than
CIP deviations. More generally, FX interventions should be used to eliminate all rents in the currency
market due to intermediation frictions, including the monopoly power of intermediaries. Because the
policymaker is the agent on behalf of the households who cannot directly participate in FX trading, the
portion of UIP deviations due to risk that is priced by the households (i.e., with their SDF) should not
be eliminated with FXI. Consistent with Friedman (1953), the policymaker should take positions in the
currency market as long as they are deemed pro�table from the point of view of the households. As a
result, the central bank should be making money, at least on average, from its FXI activity.

Implementation The optimal policy can be implemented using a conventional Taylor interest rate
rule targeting in�ation and the output gap, and a similar policy rule for FXI targeting ex ante UIP devia-
tions. For example, adopting a rule f∗t = −αEt∆zt+1 results in Et∆zt+1 =

ω̄σ̄2
t

1+αω̄σ̄2
t
(n∗t −b∗t ) from (13),

which converges to Et∆zt+1 = 0 as α→∞, and f∗t = b∗t − n∗t in this limit. In other words, FX inter-
ventions should lean against the wind intensively enough until the UIP wedge is entirely eliminated.

Despite its simplicity, the optimal FX policy might be hard to implement in practice. The challenge
is that neither the UIP wedge it − i∗t − Et∆et+1, nor liquidity shocks n∗t , nor the natural level of the
real exchange rate q̃t are directly observable in the data. One possibility is to condition the policy rule
on observables that proxy for the policy target, e.g. the ex-post carry trade return it−1− i∗t−1−∆et or
the level of the exchange rate, f∗t = −α(et− ē). In this case, the �rst-best implementation is generally
infeasible, yet a policy that approaches a peg can be approximately optimal when �nancial shocks
n∗t dominate the volatility of the exchange rate relative to fundamental shocks q̃t. The challenge of
unobservable targets and shocks is, of course, not unique to FXI, as it is a common feature of optimal
monetary policy in a closed economy, where the policymaker needs to make judgement calls about
the natural rate of interest, potential output and NAIRU to o�set shocks to aggregate demand and
accommodate productivity shocks (see CGG). Even though not directly observable in the data, these
concepts are useful in guiding the decisions of policymakers.

3.2 Divine coincidence

We consider now a special case of Theorem 1, whereby it is possible to achieve both policy objectives
— in the goods and in the �nancial market — with a single monetary instrument, without recurring
to capital �ow or exchange rate management using FXI. By analogy with the closed-economy New
Keynesian literature, we refer to this case as divine coincidence, and we further show in Section 5.1 how
it generalizes the closed economy case.

The open-economy divine coincidence obtains when the �rst-best (natural) real exchange rate is
stable at some level, q̃t = q̄. In this case, allowing for an arbitrary path of FXI {f∗t }, a monetary policy
rule that targets the same level of the nominal exchange rate, et = q̄, both ensures a zero output gap and
eliminates the risk-sharing wedge, xt = zt = 0, delivering the �rst best outcome. Indeed, in this case,
σ̄2
t = vart(∆et+1) = 0, and thus zt = 0 is the unique solution of (11) and (13) independently of the

path of (n∗t , f
∗
t ). Given zt = 0 and the fact that q̃t = q̄, expenditure allocation in the goods market (12)

eliminates the output gap, xt = 0, as the unique equilibrium outcome. We summarize this result in:
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Proposition 2 If the natural real exchange rate is stable, q̃t = q̄, thenmonetary policy that fully stabilizes

the nominal exchange rate, et = q̄, ensures the �rst best allocation with xt = zt = 0, for any path of FX

interventions, including f∗t = 0. An exchange rate peg is superior to in�ation and output gap targeting, as

it rules out multiplicity of exchange rate equilibria.

In general, our model emphasizes the tension between the need for exchange rate adjustment in
the goods market with sticky prices and the risk-sharing consequences of a volatile exchange rate un-
accommodated by FXI. This dual role of the exchange rate, generally, makes a single policy instrument
insu�cient to attain e�ciency in both goods and �nancial markets at once, as suggested by Theorem 1.
Divine coincidence is the situation when this policy tradeo� disappears, as the natural real exchange
rate is stable and, thus, a �xed nominal exchange rate does not compromise e�ciency in the goods
market. In turn, a nominal peg leads to a more elastic currency supply in the �nancial market and, in
the limit, entirely frictionless intermediation. Thus, a �xed nominal exchange rate comes at no cost
from the perspective of the goods market and delivers the �rst-best risk sharing from the perspective
of the �nancial market. In fact, the �xed exchange rate policy is implied by Theorem 1, as xt+1 = 0 is
consistent with et+1 = Etet+1 = q̄ in this case, making sure the optimality condition (16) holds under
a monetary peg, δt →∞. In Figure 1, Divine (coincidence) corresponds to the case when σq̃ = 0 and,
hence, the blue region collapses to the origin with the Peg coinciding with the First Best.

Divine coincidence provides a rationale for pegging the exchange rate. Moreover, in this case, a
nominal exchange rate peg by means of monetary policy is not only e�cient, but also e�ective, as it
eliminates the possibility of multiple equilibria. Consider the alternative policy of output gap (in�ation)
targeting that ensures xt = 0 independently of the path of zt. Under divine coincidence, such policy is
consistent with an equilibrium with et = q̄ and zt = σ̄2

t = 0. However, this is not a unique equilibrium,
as there exists another equilibrium with arbitrageurs uncertain about the future exchange rate, σ̄2

t > 0,
which makes them charge a risk premium in response to currency demand shocks n∗t , resulting in a
self-ful�lling volatile exchange rate equilibrium.28 The positive volatility equilibrium is suboptimal as it
features E0z

2
t > 0 in contrast to the �rst best with zt = 0. Thus, under divine coincidence, an exchange

rate peg dominates in�ation targeting, even though the result of the peg is zero in�ation and a zero out-
put gap (cf. Marcet and Nicolini 2003, Atkeson, Chari, and Kehoe 2010, Bianchi and Coulibaly 2023).

How special is the open-economy divine coincidence? On the one hand, this result extends imme-
diately to various generalizations of the goods market with expenditure switching between varieties of
home and foreign tradable goods (see Section 5). In each such model, one can de�ne a concept of the
natural real exchange rate that delivers e�cient expenditure switching. A stable natural real exchange
rate implies that a �xed nominal exchange rate does not come into con�ict with the objectives of in�a-
tion and output gap stabilization in the goods market. At the same time, a stable natural real exchange
rate is, of course, a knife-edge case which we do not expect to systematically hold in practice, yet it
provides a useful benchmark and a stark illustration of the model’s mechanism.

28If n∗t follows an AR(1), then et = q̄−zt follows an ARMA(2,1) with innovations proportional to the innovation of ω̄σ̄2n∗t ,
where σ̄2 = vart(et+1) > 0 is a �xed point, in addition to the other �xed point with σ̄2 = 0. Note the di�erence of this
multiplicity from the indeterminacy in Kareken and Wallace (1981).
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On the other hand, the divine coincidence result is speci�c to the structure of the �nancial market
that we assume in our framework. In particular, an ex post stable exchange rate, et+1 ≡ 0, implies ex
ante certainty, σ̄2

t = vart(et+1) = 0, and this in turn guarantees that UIP holds and risk sharing is
undistorted. Naturally, this requires that a peg is ex ante credible. Furthermore, this result relies on
the structure of the model in which a fully stabilized exchange rate eliminates UIP deviations via the
endogenous response of arbitrageurs who are willing to supply currency with in�nite elasticity in the
absence of exchange rate risk. If UIP deviations coexist with σ̄2

t = 0, then the divine coincidence result
breaks down. For example, this is the case when risk-sharing frictions are driven by balance sheet
constraints rather than risk, and UIP and CIP deviations are closely linked. To the extent a credible peg
eliminates a large portion of UIP deviations which are larger than CIP deviations — as the data seem to
suggest (Itskhoki and Mukhin 2021b) — this result o�ers a useful quantitative benchmark.29

Optimal currency areas The divine coincidence result also provides an important benchmark for
common currency areas, which are optimal when the natural real exchange rate between member
countries is stable. In particular, this is the case when member countries share correlated fundamental
shocks con�rming the logic of Mundell (1961). What is new to our result is that it not only identi�es the
cases when the goods-market costs of a �xed exchange rate are low, but it also emphasizes the bene�ts
of a �xed exchange rate from the perspective of the �nancial market. These bene�ts include reduced
�nancial volatility and improved risk sharing between member countries. The bene�ts are larger the
more the member countries trade with each other, as captured by the openness weight γ in the welfare
loss function (10). Furthermore, we expect a �xed exchange rate — or a formation of a currency union
— to dominate the alternative of an unmanaged (free) �oat, when the volatility of the bilateral nominal
exchange rate under the �oat is dominated by non-fundamental currency demand shocks n∗t relative
to fundamental macro-trade shocks q̃t.30

3.3 Crawling peg

Proposition 1 suggests that it is generally optimal to combine conventional monetary policy with FX
interventions. However, in practice, it is not uncommon for countries to abstain from using FXI. This
may be due to incomplete information about shocks and optimal targets in the currency market or due
to additional constraints on the central bank’s balance sheet, f∗t ∈ Ft, making it costly to intervene
when FX reserves are too low (e.g., f∗t ≥ 0, non-negative reserves) or too high (e.g., σ̄t|f∗t | ≤ ᾱ, value-
at-risk). In both cases, the central bank is prone to negative valuation e�ects, which can undermine its

29The red policy frontier in Figure 1 illustrates this property of the model. Unlike in the Trilemma models (blue frontier),
our model features �nancial exchange rate volatility (zt) in excess of fundamental volatility (q̃t) under a �oat, yet it behaves
like a trilemma model in the limit of a peg. Unlike in the models with exogenous transmission of �nancial shocks (yellow
frontier), which do not feature divine coincidence, our model does not pass-on �nancial volatility (n∗t ) into the output gap
under a peg, which allows the model to accommodate the Mussa facts on the change in exchange rate regimes.

30This insight is consistent with the experience of the Euro Zone, where the cost of borrowing was harmonized across
countries and the cross-country �nancial �ows increased signi�cantly since the introduction of the euro in 1999 (Blanchard
and Giavazzi 2002). Of course, an alternative interpretation is that these capital �ows were excessive and driven by ine�-
cient risk pricing of borrowing in Southern Europe, a case that may also arise in our model environment augmented with a
possibility of default on net foreign liabilities resulting in �ckle capital �ows (Fornaro 2022).
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credibility and lead to a loss of independence. Thus, we now study general implications of Theorem 1
for optimal monetary and exchange rate policy away from the �rst best, when FX interventions follow
an arbitrary given path {f∗t }, including f∗t = 0 as one possibility.

Discretionary monetary interventions Before turning to the discussion of Ramsey-optimal pol-
icy, we �rst consider brie�y the e�ects of discretionary ex post monetary interventions to stabilize
the exchange rate and capital �ows. We �nd that, without commitment, the optimal policy is always
inward looking and focuses exclusively on the output gap. This is the case, even though, according
to Theorem 1, an inward-looking monetary policy is generally suboptimal, provided there are depar-
tures from the �rst-best risk sharing. Ex post discretionary monetary interventions are allocative in the
goods market and, in particular, a�ect the exchange rate. However, they cannot improve the allocation
in the �nancial market — that is, they neither prevent capital out�ows, nor improve international risk
sharing or eliminate UIP wedges.

Proposition 3 Without commitment, the optimal discretionarymonetary policy stabilizes the output gap,

xt = 0. Discretionary ex post interventions that depart from xt = 0, a�ect the exchange rate et, but do

not change capital �ows, UIP deviations or the risk-sharing wedge zt.

Proposition 3 shows that, in general, optimal discretionary monetary policy should not respond
to the exchange rate, capital �ows, or risk-sharing wedges. To see the intuition, consider an ex post
monetary tightening and an associated reduction in output xt carried out in response to a capital out-
�ow shock — namely, an increase in currency demand n∗t in (13) resulting in zt < 0 and an exchange
rate depreciation. Monetary tightening with xt < 0 leads to an appreciation of the exchange rate et,
o�setting the e�ect of zt < 0, and expenditure switching away from home non-tradables in the goods
market, according to the equilibrium condition (12).

This might be mistaken for a policy success to fend o� the capital out�ow shock. However, this
outcome results only in costs in the goods market (xt < 0) and no bene�ts in the �nancial market
(as zt < 0 still). Indeed, the equilibrium in the �nancial market, and in particular the path of the
risk-sharing wedge zt, is characterized by (11) and (13), which remain una�ected by a discretionary
monetary tightening. Neither the size of the capital out�ow, n∗t + f∗t − b∗t , nor the unit price of risk
ω̄σ̄2

t in (13) respond to ex post monetary tightening. Discretionary policy a�ects the path of et and
Et∆et+1, but it has no a�ect on et+1 − Etet+1, and thus leaves the expected conditional volatility of
the exchange rate, σ̄2

t , unchanged. As a result, the size of the UIP deviation (14) at t is also una�ected,
emphasizing the futility of discretionary monetary interventions to manage capital �ows.31

Commitment to a crawling peg We now return to Theorem 1, and consider the case when FXI do
not ensure the �rst-best risk sharing (n∗t +f∗t −b∗t 6= 0) and divine coincidence does not apply (q̃t 6= q̄),

31The result that monetary policy has no e�ect on capital �ows whatsoever relies on the assumption that preferences are
separable in tradables and non-tradables and no foreign intermediates are used in production. Despite being a special case,
this provides a benchmark that illustrates the limited capacity of conventional monetary policy in capital �ow management.
Note that this result also generalizes to the case where noise shocks n∗t are partially elastic to the expected UIP deviation
which we show remains unchanged.
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but the monetary authority can commit to a policy rule to respond to exchange rate surprises condi-
tional on the state of the economy. In other words, we step outside of the special cases considered
in Propositions 1–3, and study the general implications of the Ramsey-optimal monetary policy in an
open economy, summarized in (16).

For simplicity, we consider a one-time deviation from the �rst-best FXI, and show that both a pure
peg (et = ē) and a pure �oat (corresponding to xt = 0) are, in general, suboptimal. Instead, the optimal
monetary policy has a structure of a managed �oat, or a crawling peg, with δt ∈ (0,∞) in (16).32

That is, the policymaker commits to respond with monetary interventions xt to smooth out surprise
changes in the exchange rate, et − Et−1et, and in particular tighten monetary policy to accommodate
depreciation shocks. We prove in Appendix A3:

Proposition 4 Consider a case in which FXI {f∗t } are unconstrained in every period but t. Then xt = 0

in every period except t+ 1, where:

xt+1 = − 2γω̄

1− γ
ω̄σ̄2

t

1 + β + ω̄σ̄2
t

(n∗t + f∗t − b∗t )2(et+1 − Etet+1), (17)

which corresponds to the general optimality (16) with the Lagrange multiplier on the risk-sharing con-

straint (13) proportional to the UIP deviation, µt = (1 + β + ω̄2σ̄2
t )
−1Et∆zt+1.

To see the intuition, consider a state of the world with non-zero intermediated capital �ows and
a binding risk-sharing condition (13), so that µt(n∗t + b∗t − f∗t ) 6= 0. As discussed above, adjusting
monetary policy in period t does not a�ect contemporaneous capital �ows. Instead, the policymaker
can only indirectly mitigate the risk-sharing wedge by encouraging arbitrageurs to take larger positions
and lowering the required risk premium. Monetary policy achieves this by leaning against surprise
exchange rate innovations at t + 1 and lowering the perceived conditional variances of the exchange
rate, σ̄2

t = vart(∆et+1). This makes �nancial intermediation less risky and relaxes the risk-sharing
constraint (13). In particular, this implies that an unexpected depreciation, et+1 > Etet+1, requires
a monetary tightening that results in an output gap, xt+1 < 0. Importantly, this commitment does
not depend on the source of volatility in the exchange rate at t + 1 — namely, whether exchange rate
surprises are driven by �nancial noise shocks n∗t+1 or fundamental macro shocks q̃t+1.33 Thus, optimal
monetary policy is no longer inward-looking and limits the free �oat of the exchange rate.

Proposition 4 has several important implications. First, the optimal monetary policy always stabi-
lizes the expected output gap, Etxt+1 = 0, irrespective of the path of the exchange rate et and the risk-
sharing wedge zt. Symmetrically, any expected change in the exchange rate, Et∆et+1, does not require
accommodation with a monetary policy response. In other words, it is only exchange rate surprises,
et+1 − Etet+1, that require a policy response. Therefore, the optimal policy rule has the structure of a

32In Figure 1, this corresponds to the Managed Float point on the red policy frontier, describing the optimal compromise
between exchange rate and output gap volatility, after the use of FXI to reduce the red area (�nancial volatility) has been
exhausted given the policymaker’s constraints.

33Substituting (16) into (12) and using Etxt+1 = 0 yields et+1 − Etet+1 = 1
1+δt

[
(q̃t+1 − Etq̃t+1) − (zt+1 − Etzt+1)

]
,

which shows how the optimal policy lean δt > 0 dampens equally the exchange rate surprises from q̃t+1 and zt+1.
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crawling peg (band) — it fully allows for expected exchange rate adjustment and responds only to un-
expected exchange rate movements. The implication is that any medium-run exchange rate adjustment
can be accommodated with expected exchange rate changes — a managed �oat or a crawling band —
limiting the trade-o� to be exclusively about managing high-frequency exchange rate movements.34

Second, optimal monetary interventions in the currency market are state-contingent. Taking ad-
vantage of non-linearity allowed by our approximation, Proposition 4 shows that the intensity of the
optimal policy lean δt increases with the size of the frictional UIP wedge (13) and the size of the cap-
ital (out)�ow shock. A constant-intensity policy rule, δt ≡ δ, is feasible, and results in a constant
conditional exchange rate volatility, σ̄2

t = σ̄2.35 However, it is suboptimal and dominated by a state-
contingent policy rule with a policy lean:

δt =
2γω̄

1− γ
ω̄σ̄2

t

1 + β + ω̄σ̄2
t

(n∗t + f∗t − b∗t )2,

which is both increasing in the unit price of the exchange rate risk, ω̄σ̄2
t , and increasing and convex in

the size of unaccommodated capital out�ow shocks, |n∗t + f∗t − b∗t |. Recall from (13)–(14) that the size
of the frictional UIP deviation is given by Et∆zt+1 = ω̄σ̄2

t (n
∗
t + f∗t − b∗t ), and thus the optimal policy

lean is quadratic in the UIP deviation.
It follows that the crawling peg is more relevant for countries with a larger tradable sector γ and,

thus, higher welfare costs of capital �ow shocks. Furthermore, periods with larger expected exchange
rate volatility, σ̄2

t , and larger excess demand for currency, |n∗t + f∗t − b∗t |, call for a commitment to
a stronger future response of monetary policy xt+1 to exchange rate surprises et+1 − Etet+1. This
suggests a state-contingent policy approach to �nancial market volatility, which can be ignored when
it causes no spikes in risk premia (intermediation wedges), but should be smoothed out with increasing
intensity using monetary policy tools when �nancial volatility distorts risk sharing and direct �nancial
market interventions (FXI) are constrained.

3.4 Optimal FXI and forward guidance

We have focused so far on cases when the �rst-best allocation is implementable in all but perhaps one
period, which signi�cantly simpli�es the analysis and allows us to solve for the optimal policy rule in
Proposition 4. More generally, Theorem 1 shows that optimal policy depends on the history of previ-
ous shocks as well as expectations about their future realizations as summarized by the endogenous
Lagrange multipliers µt. While no closed-form solution is available in the general case, we provide here
a further characterization of the second-best optimal policies.

34One policy option is to set a very narrow band which in the limit approximates et+1 = Etet+1, whereEtet+1 satis�es the
intertemporal budget constraint given fundamental shocks up to time t. Such policy rule fully eliminates �nancial volatility
(as σ̄2

t = 0) at the cost of a delayed adjustment to fundamental shocks. Some oil exporting countries, such as Saudi Arabia,
follow a comparable policy, in parallel accumulating an FX sovereign wealth fund for the future when global demand for oil
declines. If the present value of all future oil revenues is predictable, this rule approximates the �rst-best policy.

35In the class of constant-lean policies, one can optimize over (δ, σ̄2) to show that δ is increasing in openness γ and in the
ratio of �nancial-noise n∗t to macro-fundamental q̃t volatility. See Kollmann (2004) for a quantitative analysis of this trade-o�
in a model with exogenous UIP deviations that are assumed to vanish under a �xed exchange rate.
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When FXI are unconstrained in period t, the risk-sharing constraint (13) is not binding and µt = 0.
Theorem 1 then implies that monetary policy at t + 1 can focus solely on closing the output gap,
xt+1 = δt = 0, irrespective of binding risk-sharing constraints in any other periods. However, even
in this case, optimal FXI do not necessarily just eliminate the UIP deviation at t. The following result
provides a general characterization of the optimal path of FX interventions and UIP deviations:36

Theorem 2 For any path of monetary policy {xt}, and with occasionally binding constraints on FX in-

terventions f∗t ∈ Ft, the optimal UIP deviation at t is given by:

Et∆zt+1 =
(
1 + β + ω̄σ̄2

t

)
µt (18)

− βEtµt+1 −
[
1 + 2ω̄(n∗t−1 + f∗t−1 − b∗t−1)(et − Et−1et)

]
µt−1,

and it is supported by f∗t that satis�es (13), that is ω̄σ̄2
t (n
∗
t + f∗t − b∗t ) = Et∆zt+1.

First, note that optimal FXI focus exclusively on improving the allocation in the �nancial market
and do not respond to the output gap xt, even when monetary policy is constrained, as f∗t cannot a�ect
the path of xt. Second, even when FXI are unconstrained at t, they do not necessarily o�set currency
demand shocks as in the �rst best. Indeed, UIP is optimally distorted, Et∆zt+1 6= 0, if either µt−1 6= 0

or Etµt+1 6= 0 in (18). The latter e�ect is macroprudential FXI in anticipation of the future binding
risk-sharing constraint at t + 1. Conversely, µt−1 captures forward-guidance FXI to alleviate the UIP
deviation at t−1, which requires commitment.37 Both forward-guidance and preemptive FXI require a
larger intervention at t, that is f∗t < b∗t − n∗t when there is an unaccommodated capital out�ow either
at t + 1 or at t − 1. We illustrate these e�ects in Appendix Figure A2 using an example with a full
analytical solution provided in Appendix A3.

Thus, an unconstrained use of FXI at t does not just eliminate UIP deviations at t, but also smoothes
out UIP violations in previous and future periods. Nonetheless, this does not imply that the optimal pol-
icy in any given period depends on the entire sequence of past and future binding constraints. Perhaps
surprisingly, we show next that the Ramsey policy features both optimal amnesia and myopia.

Proposition 5 (i) If FXI are unconstrained at t − 1, µt−1 = 0, then the optimal policy {δt+j , f∗t+j}j≥0

does not depend on the previous history (“amnesia”). (ii) If, in addition, µt = 0, then the optimal policy

at t, (δt, f
∗
t ), is the same under commitment and under discretion. (iii) If FXI are also expected to be

unconstrained on average at t+ 1, Etµt+1 = 0, the optimal policy closes both the output gap and the UIP

deviation, δt = Et∆zt+1 = 0, irrespective of any future shocks and biding constraints (“myopia”).

Unlike with the output gap (16), it is only optimal to eliminate the period t UIP deviation if FXI are
unconstrained simultaneously at t−1, t and t+1. Otherwise, risk sharing at t is distorted due to either

36The optimality condition (18) both determines the optimal UIP deviation given the path of Lagrange multipliers {µt}
and characterizes the dynamics of µt given equilibrium UIP deviations. Conditions (16) and (18), together with constraints
(11)–(13), characterize the Ramsey solution {xt, f∗t , zt, b∗t , et, σ̄2

t , µt} to problem (15) given constraints on the path of policies.
37Similarly to conventional monetary guidance, the policymaker exploits the fact that zt−1 is forward-looking and depends

on Et−1zt in (13). In addition, and di�erently from conventional forward guidance, future FXI also lean against surprises,
stabilizing zt around Et−1zt to reduce the exchange rate volatility σ̄2

t−1. The two terms in the bracket in front of µt−1 in (18)
correspond to these two forward guidance channels, with the latter mirroring the optimal monetary policy lean δt−1 in (16).
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current, past or future shocks and a limited ability to o�set them with FXI. However, no past shocks
and frictions — summarized by {µt−j}j≥0 — matter at t if FXI is unconstrained at t − 1 and, hence,
µt−1 = 0. Therefore, the optimal FXI exhibit memory loss after the �rst unconstrained state is reached.
In that state, UIP is optimally distorted to absorb all intertemporal spillovers from the earlier risk-
sharing wedges. Similarly, no future shocks and binding constraints, {µt+j}j>0, matter for the optimal
intervention at t if FXI are unconstrained at t+1 and, hence, µt+1 = 0. Unlike with monetary guidance,
full FXI guidance is achieved in one unconstrained period because the use of reserves introduces no
distortions (like output gaps) or costs that need to be smoothed over time.

Similar logic applies to future expected shocks and binding risk-sharing constraints, which trigger
an early use of FXI and backward spillovers into anticipatory UIP deviations when current FX reserves
are insu�cient to fully o�set or stop the propagation of the shock. Nevertheless, there is an important
asymmetry between past and future shocks as only the former ones require commitment. Indeed, with-
out commitment, the government cannot ful�ll its past promises, and the optimal policy is generally
not time consistent at t, unless µt−1 = µt = 0. In contrast, the optimal policy response to future shocks
(that result in µt+1 6= 0) is time consistent and includes both preemptive FXI and NFA accumulation
(whether o�cial f∗t or private b∗t ) that alleviate expected future distortions.

4 Extensions

4.1 International transfers and capital controls

This section generalizes the baseline model to feature capital control taxes and international wealth
transfers due to valuation e�ects on cross-border asset holdings. The goal of this analysis is twofold.
First, we study whether capital controls can substitute for other policy instruments when the latter
are constrained. Second, we explore the optimal policy mix in the presence of cross-border rents from
international currency provision.

Towards these goals, we extend the �nancial sector to additionally feature foreign �nancial actors —
both liquidity traders and intermediaries. Speci�cally, the aggregate liquidity demand for currency
originates from both domestic and international noise traders, N∗t = N∗Ht + N∗Ft. There are also
domestic and foreign intermediaries — of measure mH and mF , respectively — that supply currency
D∗Ht and D∗Ft according to a portfolio choice rule similar to (4). Appendix A4 contains a detailed
description of the environment and derivations, while this section outlines the results.

We further allow for a rich set of taxes. In particular, we assume that domestic households face a
tax τht on their home-currency deposits, so that the after-tax return on their asset position isRt/(1+τht ).
Domestic �nancial agents — both noise traders and intermediaries — are subject to a pair of taxes
(τHt, τ

∗
Ht) on their home-currency and foreign-currency positions, respectively. As a result, their after-

tax carry-trade return is given by R̃∗Ht+1 =
R∗t

1+τ∗Ht
− Rt

1+τHt
Et
Et+1

. In contrast, foreign �nancial agents face
only a tax τFt on their home-currency position, resulting in an after-tax carry-trade return R̃∗Ft+1 =

R∗t − Rt
1+τFt

Et
Et+1

. No other asset holdings are in the domestic policymaker’s tax jurisdiction, and in
particular she cannot tax either foreign households or the foreign-currency positions of foreign traders
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(see Appendix Figure A3). Without loss of generality, we interpret (τ∗Ht, τFt) as ex-ante taxes on cross-
border asset positions — that is, preemptive capital controls (Das, Gopinath, and Kalemli-Özcan 2022).

The presence of foreign �nancial agents results in an international wealth transfer from incomes
and losses on their carry trade positions. Speci�cally, R̃∗Ft+1 ·

N∗Ft+D
∗
Ft

R∗t
is the income transfer from

home to the rest of the world, and it is subtracted from the home country budget constraint (6).38

Furthermore, asset taxes introduced above a�ect the equilibrium risk-sharing condition (7). We show
in the appendix that the generalized risk-sharing condition with asset taxes can be written as:

βR∗tEt
CTt
CTt+1

=
1 + τht
1 + τt

+
ωσ2

t

(1 + τt)2

B∗t −N∗t − F ∗t
R∗t

, (19)

where τt can represent one of two capital control policies: (i) a common tax on home-currency asset
holdings for both home and foreign �nancial agents, τHt = τFt = τt, or (ii) a capital control tax
on in�ows and a subsidy on out�ows, τFt =

−τ∗Ht
1+τ∗Ht

= τt. Note that these capital control policies
work regardless of the composition of home and foreign intermediaries and noise traders. The other
equilibrium conditions remain unchanged.

The generalized risk-sharing condition (19) clari�es two important properties of capital controls.
From the point of view of risk sharing, capital control taxes τt and quantity interventions in FX mar-
kets F ∗t are substitutes and can be used interchangeably to o�set the e�ect of liquidity shocks N∗t on
macroeconomic allocations and risk sharing. In particular, there are three ways in which asset taxes
can be used to o�set the distortionary e�ect of a capital out�ow shock, N∗t > 0:

(i) with a savings tax on households, τht > 0, which encourage tradable consumption despite de-
preciated exchange rate (see the analysis of �nancial repression in Itskhoki and Mukhin 2022);

(ii) a home-currency investment subsidy for an entire �nancial sector, τHt = τFt = τt < 0, which
allows the �nancial sector to collect carry trade returns and accommodate the currency demand
shock without distorting the household risk-sharing condition;

(iii) a capital controls policy, taxing foreign-currency positions of domestic agents, τ∗Ht = −τt
1+τt

> 0,
and subsidizing home-currency positions of foreigners, τFt = τt < 0, again resulting in a positive
carry trade return for �nancial agents without distorting the household risk sharing.

The feature of all three policies is that they generate a wedge in returns between households and �-
nancial sector, decoupling carry trade returns from the risk-sharing wedge.39

In practice, however, the use of capital controls is complicated by the need to set state-contingent
tax rates that vary signi�cantly over time. Furthermore, the planner may be unable to distinguish
between di�erent types of agents and capital �ows to impose agent- and asset-speci�c capital controls.

38Note that, while N∗Ft is an exogenous asset position (liquidity shock), the position of intermediaries depends on the
expected carry-trade return, D

∗
Ft
R∗

t
=

Et{Θt+1R̃
∗
Ft+1}

ωσ2
t /(1+τFt)2

. Thus, arbitrageurs invest in a portfo�io with a positive expected return
and make positive expected pro�ts. Therefore, rents can be extracted systematically only from positions against noise traders.

39Another approach involves taxing pro�ts (and subsidizing losses) from �nancial transactions to e�ectively increase the
risk-absorption capacity of intermediaries (1/ω), however, this requires modeling entry and exit of arbitrageurs (Atkeson,
Eisfeldt, and Weill 2015). An alternative set of tax instruments involves import and export taxes, or so-called �scal devalua-
tions, that introduce a tax wedge in the goods market equilibrium condition (12) instead of (20), and can remove the goods
market distortions associated with a �xed exchange rate (Farhi, Gopinath, and Itskhoki 2014).
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For example, condition (19) illustrates that setting a uniform tax on home bonds for all agents, τht =

τHt = τFt = τt, does not have the desired e�ect, as it is equivalent to a shift in the home-currency
nominal interest rate Rt that cannot o�set capital out�ow shocks (recall Proposition 3). Finally, capital
control policies generally require subsidies and are not budget-balanced, unlike optimal FXI that by
construction generate revenues on average.

With these caveats in mind, we proceed with the analysis of optimal policies specializing to the
case of capital controls on international in�ows and out�ows, τFt =

−τ∗Ht
1+τ∗Ht

= τt, without the use of
domestic asset taxes, τht = τHt = 0. We follow the same approach as in Section 2.2 and approximate
the policy problem around the planner’s allocation, which now takes into account the possible rent
extraction from foreign traders. We denote with ψt ≡ it − i∗t −Et∆et+1 − τt the expected carry trade
return for both home and foreign investors, which also equals the after-tax UIP deviation.

We prove the following two results that characterize equilibrium risk-sharing and international
transfers. First, the generalized risk-sharing condition (13) is now:

Et∆zt+1 = ψt + τt, where ψt = ω̄σ̄2
t (n
∗
t + f∗t − b∗t ) and σ̄2

t = vart(et+1). (20)

Capital controls τt decouple the household risk-sharing wedge zt dynamics from the risk premium ψt

that intermediaries charge to accommodate international capital �ows. In other words, while capital
controls can substitute for FXI f∗t to eliminate the risk-sharing wedge, they do so without eliminating
the equilibrium risk premium (cf. Jeanne 2022). Similarly to the domestic interest rate Rt, changes in
capital controls τt are absorbed by expected depreciation Et∆et+1 and do not a�ect the expected after-
tex carry-trade returns ψt, which are determined by the balance of supply and demand in the currency
market (20).

Second, the expected transfer of carry-trade incomes and losses to the rest of the world is given by
β
(
mF
ω̄σ̄2

t
ψt− n∗Ft

)
ψt, where mF is the share of foreign intermediaries and n∗Ft = N∗Ft/ȲT is the foreign

noise trader demand shock normalized by tradable output. This leads to the following second-order
approximation to the welfare loss function around the planner’s allocation:

1

2
E0

∞∑
t=0

βt
[
(1− γ)x2

t + γz2
t + 2βγ

(
mF

ω̄σ̄2
t

ψt − n∗Ft
)
ψt

]
. (21)

The policymaker chooses the path of policies {xt, f∗t , τt} and equilibrium outcomes {zt, et, b∗t , ψt, σ̄2
t }

to minimize (21) subject to (20), as well as the original constraints (11) and (12). In addition to minimiz-
ing the loss from the output gap and the risk-sharing wedge, the objective now also includes minimizing
transfers abroad to foreign traders.40 Matching the three policy targets, the policymaker now has access
to three instruments, which include capital controls τt in addition to monetary policy xt and FXI f∗t .

40Interestingly, to the second-order approximation, international rents depend only on expected returns, while ex-post
valuation e�ects are of a higher order. As a result, the expression for transfers is largely isomorphic to the one in a deter-
ministic case with CIP deviations replaced by expected UIP deviations (cf. Fanelli and Straub 2021). Furthermore, this implies
that, given the structure of international asset markets and the order of approximation, the planner does not aim to use
state-contingent valuation e�ects to ‘complete the markets’ (as in Fanelli 2017).
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Proposition 6 (a) An undistorted allocation without international transfers, xt = zt = ψt = 0, is always

feasible and requires the use of FXI without capital controls. (b) When n∗Ft 6= 0, the planner can increase

welfare with an international transfer by only partially accommodating the foreign liquidity demand,

ψt =
ω̄σ̄2

t
2mF

n∗Ft, and still ensuring xt = zt = 0 with capital controls, τt = −ψt. (c) WhenmF > 0, further

gains are achieved by deviating from xt = zt = 0 to increase σ̄2
t and the optimal transfer from abroad.

The �rst part of the proposition emphasizes that the undistorted outcome of Proposition 1 is still
feasible when parts or all of the �nancial sector is o�-shore. Indeed, implementing the baseline �rst-
best monetary and FXI policies, xt = 0 and f∗t = −n∗t , still ensures the undistorted allocation and
a zero international transfer, as this policy closes the UIP gap and, hence, eliminates expected carry
trade returns, ψt = 0. Importantly, in doing so, capital controls cannot substitute for FXI, as they
eliminate the risk-sharing wedge without eliminating the carry trade returns. Thus, in the presence of
international �nancial actors, the side e�ect from the use of capital controls to eliminate the risk-sharing
wedge is an international transfer. In general, this transfer may be positive or negative. However, in
an important special case when all noise traders are domestic (n∗Ft = 0) and there are some foreign
intermediaries (mF > 0), the expected transfer term in (21) is weakly negative, making xt = zt =

ψt = 0 the best unconstrained policy outcome.41

In the presence of foreign liquidity demand for domestic currency — whether n∗Ft < 0 or n∗Ft > 0 —
a country can generate rents from the rest of the world by exploiting the monopoly power it has in sup-
plying currency. The second part of Proposition 6 shows that when n∗Ft 6= 0, it is no longer optimal to
accommodate the entire currency demand n∗t with FX interventions, as in Proposition 1. Furthermore,
it is possible to both eliminate wedges, xt = zt = 0, and ensure positive rents in the currency market.
This requires using capital controls to eliminate the risk-sharing wedge in (20), τt = −ψt, which en-
sures zt = 0 regardless of the equilibrium UIP deviation ψt. The maximum government revenues from
interventions are attained by ensuring that ψt =

ω̄σ̄2
t

2mF
n∗Ft, which is the peak of the rents term in (21).

In turn, this requires that FXI fully satisfy the currency demand of domestic noise traders and only par-
tially for foreign noise traders, e.g. f∗t = −n∗Ht−

1
2n
∗
Ft when all intermediaries are foreign (mF = 1).42

Collecting rents requires leaving positive carry trade returns on the table for the intermediaries,
who in turn constrain the maximum rent extraction by the government. The elasticity of currency
supply by foreign intermediaries is mF

ω̄σ̄2
t

, exactly as it appears in the wealth transfer term in (21) and
in the expression for the rent-maximizing UIP deviation ψt. Unlike in the related analyses of Fanelli
and Straub (2021) and IPF, this elasticity is endogenous to policy via the equilibrium exchange rate
volatility, σ̄2

t = vart(et+1). The last part of Proposition 6 shows that to maximize rents and the policy
objective, the planner departs fromxt = zt = 0 to reduce the elasticity of intermediary currency supply.
Speci�cally, this requires amplifying the exchange rate shocks with both monetary policy deviations xt
and controls on capital �ows zt to increase the resulting exchange rate volatility σ̄2

t above vart(q̃t+1).43

41The literature often focuses on this case, where policy generates no expected rents and is used towards other objectives
at the cost of international income loss (Jeanne 2012, Amador, Bianchi, Bocola, and Perri 2019, Fanelli and Straub 2021).

42In practice, the non-negative FX reserves constraint f∗t ≥ 0 makes it hard to collect rents when traders short home
currency n∗Ft < 0, explaining the observed asymmetry between Switzerland and Argentina.

43The proof in the appendix shows that the optimal deviations satisfy (1−γ)xt = γEt∆zt+1 = γω̄
2

(n∗Ft−1)2(et−Et−1et),
amplifying exchange rate surprises following foreign noise-trader shocks, in reverse to stabilization policy in (16)–(18).
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To summarize, optimal FX interventions always lean against UIP deviations, but stop short of fully
o�setting the foreign liquidity demand for currency. This leaves the UIP premium partially open to
ensure positive equilibrium rents. Echoing the recent experience of Switzerland, a positive demand for
home currency should be addressed by issuing reserves and accumulating assets in foreign currency,
while simultaneously imposing capital controls or allowing the exchange rate to partially appreciate
(Bacchetta, Benhima, and Berthold 2023).

4.2 International cooperation

Up until now, we have focused on optimal policy in a small open economy that takes as given global
economic conditions, in particular the world interest rate. This section studies international spillovers
and optimal policy coordination in a multi-country world. Towards this end, we consider a world
comprised of a continuum of small open economies index by i ∈ [0, 1], each one isomorphic to the
country in our baseline model, with country i = 0 (the US, denoted with ∗) issuing the global funding
currency (the dollar). We denote with m0 ≥ 0 the measure of countries i ∈ (0,m0] that form a
dollar currency union (or dollar pegs), which in particular nests the case of a non-in�nitesimal US
economy when m0 > 0. There is a global market for the tradable endowment good and a sticky-price
non-tradable production sector in each economy, as in the baseline model. The law of one price still
holds for tradables, and now we write it in logs as pit = p∗Tt + eit for all i ∈ (0, 1] with eit denoting the
country i nominal exchange rate against the dollar. In general, we now allow p∗Tt 6= 0, and π∗Tt ≡ ∆p∗Tt
denotes the US dollar tradable in�ation.

We make two assumptions about the structure of the asset market. First, only nominal dollar bonds
are available for international risk sharing, which generates an asymmetry between the US and other
economies. Second, for each currency there is a separate market, in which agents can trade it against
the dollar. This segmentation of currency markets is in line with the fact that the dollar accounts for 88%
of the global FX market turnover, but it is not crucial for our results which remain largely unchanged
if one assumes that arbitrageurs can invest simultaneously in a portfolio of currencies. For simplicity,
we assume local �nancial markets, as in the baseline model, to exclude the redistributive motive in
national policies discussed in the previous subsection. Appendix A4 provides detailed derivations.

The equilibrium conditions for a given economy are the same as in the baseline model described in
Section 2. Instead, the main di�erence is that the international real interest rate, r∗t = i∗t − Etπ∗Tt+1,
is endogenous, and it is shaped by the global market clearing condition for tradables,

∫ 1
0 citdi = yTt,

where yTt ≡
∫ 1

0 yitdi is the aggregate global endowment of tradables at t. We show in the appendix
that, to the �rst order, the global planner that cannot directly redistribute wealth across countries
equalizes the expected consumption growth, Et∆ĉit+1 = Et∆yTt+1 for all i ∈ [0, 1], where ĉit is
country i tradable consumption in the global planner’s allocation. Consequently, the real interest cor-
responding to the planners allocation equals the expected growth rate of the aggregate endowment,
r̂∗t = Et∆yTt+1.44 Recall that the local country i planner chooses Et∆c̃it+1 = r∗t taking r∗t as given,

44Under sticky prices, the global planner’s allocation is decentralized with the US monetary policy i∗t = −Et∆a0t+1, where
a0t is the log non-tradable productivity in the US, expected tradable price in�ation Etπ∗Tt+1 = Et{∆a0t+1 −∆yTt+1}, and
nominal exchange rates eit = ait − ĉit − p∗Tt for i ∈ (0, 1], where p∗Tt = a0t − ĉ0t.
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whether or not it is equal to r̂∗t , and therefore c̃it may di�er from ĉit.
Away from the optimal allocation, we de�ne the output gap xit as before, while the global risk-

sharing wedge is now ẑit ≡ cit − ĉit, which di�ers from the local wedge zit = cit − c̃it when
r∗t 6= r̂∗t . Interestingly, as our next Lemma shows, the UIP deviation (14) still corresponds to the
local wedge, ψit ≡ Etz̃it+1, while the global wedge additionally re�ects the aggregate interest rate
wedge, ψ̄t ≡ −(r∗t − r̂∗t ), where r∗t is the equilibrium interest rate.45

Lemma 1 In an equilibrium with sticky prices and frictional �nancial intermediation, the aggregate wel-

fare loss relative to the global planner’s allocation up to second order is given by:

1

2
E0

∞∑
t=0

βt
∫ 1

0

[
γẑ2

it + (1− γ)x2
it

]
di, (22)

and the global risk-sharing wedges ẑit satisfy market clearing
∫ 1

0 ẑitdi = 0 and risk-sharing conditions:

Et∆ẑit+1 = ψit − ψ̄t for all i ∈ [0, 1], (23)

where ψit ≡ ω̄iσ̄2
it(n

∗
it + f∗it− b∗it) with σ̄2

it ≡ vart(eit+1) is the currency i UIP wedge, and ψ̄t ≡
∫ 1

0 ψitdi

is the aggregate real interest rate wedge, r∗t − r̂∗t = −ψ̄t.

The risk-sharing condition (23) is the generalization of (13) which takes into account the endo-
geneity of the world interest rate r∗t . As before, the risk sharing for country i — and hence UIP for
currency i— is distorted when excess demand for the dollar relative to currency i, n∗it+f∗it− b∗it, needs
to be absorbed by the intermediaries, provided that ω̄iσ̄2

it 6= 0. The risk-sharing condition for the US,
i = 0, as well as for all countries that peg to the dollar, i ∈ (0,m0], is therefore Et∆ẑit+1 = −ψ̄t with
UIP satis�ed, ψit = 0.

In addition, (23) now features a global interest rate wedge ψ̄t common for all countries, which arises
due to unaccommodated shifts in the global demand for dollars, n̄∗t ≡

∫ 1
0 n
∗
itdi. In particular, an in-

crease in global dollar demand, ψ̄t =
∫ 1

0 ω̄iσ̄
2
it(n

∗
it + f∗it − b∗it)di > 0, depresses the world real interest

rate below its e�cient level r̂∗t . It also results in correlated UIP premia on non-dollar-pegged currencies,
i ∈ (m0, 1], capital out�ows from these countries, and depressed tradable consumption, ẑit < 0. The
resulting global savings glut and the depressed world real interest rate r∗t result in suboptimal capital in-
�ows and, hence, current account de�cits in the US and dollar-pegged countries, ẑit > 0 for i ∈ [0,m0]

(cf. Caballero, Farhi, and Gourinchas 2008, Mendoza, Quadrini, and Ríos-Rull 2009).
A cooperative optimal policy minimizes the aggregate welfare loss (22) subject to market clearing,

the risk-sharing conditions (23), as well as the expenditure switching conditions

eit = q̂it − p∗Tt + xit − ẑit, (24)
45The proof takes a �rst-order approximation to the risk-sharing condition for all i, similar to (7), resulting in

Et∆cit+1 = r∗t + ψit. Integrating across i ∈ [0, 1] yields the solution for the world interest rate, r∗t = Et∆yTt+1 − ψ̄t,
where Et∆yTt+1 = r̂∗t . Finally, using the Euler equation for the domestic currency i bond with nominal returnRit, we show
that ψit de�ned in the lemma equals the currency i UIP deviation, ψit = log(Rit/R

∗
t )− Et∆eit+1.
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where q̂it ≡ ait − ĉit, and the country budget constraints βb∗it − b∗it−1 = −ẑit for all i ∈ [0, 1]. This
extends the non-cooperative policy problem of a small open economy (15), with (24) generalizing (12).
Recall that the local country i policymaker, if unconstrained, would optimally eliminate the UIP devi-
ation, ψit = 0, taking r∗t as given (Proposition 1). However, such policy may not be optimal from the
perspective of a global policymaker who takes into account the endogeneity of r∗t .

We prove in the appendix that the cooperatively optimal unconstrained FX interventions in country i
ensure Et∆ẑit+1 = ψit − ψ̄t = 0, which has the following immediate implications:

Proposition 7 (a) If all countries are unconstrained, non-cooperative optimal FXI implement the global

planner’s allocation, and in particular ψit = ψ̄t = 0 for all i ∈ (0, 1], eliminating all UIP deviations and

implementing r∗t = r̂∗t . (b) When FXI are constrained in a subset of countries, non-cooperative policy is

subject to an externality. The cooperative policy does not fully eliminate UIP deviations in the unconstrained

countries, ψit = ψ̄t 6= 0, limiting ine�cient capital out�ows from/to constrained economies.

When all countries are unconstrained, the optimal non-cooperative policies from Proposition 1 that
eliminate UIP deviations country-by-country, ψit = 0 for all i, translate into a globally optimal outcome
with ψ̄t = 0 and r∗t = r̂∗t . That is, the Nash equilibrium played by local policymakers results in zero
output gap and optimal risk sharing between all economies. Elimination of all UIP deviations rebalances
capital �ows and eliminates the pressure on the global real interest rate.46 This result suggests the
usefulness of swap lines between central banks, which can relax constraints on FXI and allow countries
to achieve the optimum allocation without relying on either ex ante, or ex post international wealth
transfers (Bahaj and Reis 2021). Furthermore, such swap lines are not subject to incentive compatibility
or time consistency issues, as the best non-cooperative use of relaxed FXI does not lead to negative
international spillovers and is bene�cial cooperatively.

In contrast, when FXI of a subset of countries are constrained and shocks have a correlated compo-
nent, so that ψ̄t 6= 0, this results in international spillovers that are not internalized by national policy-
makers. The cooperative policy eliminates the risk-sharing wedge between the group of unconstrained
and constrained countries, reducing the extent of ine�cient capital �ows. For example, with a global
demand shock for dollars ψ̄t > 0, the cooperative policy ensures Et∆ẑit+1 = 0 for the unconstrained
countries, yet with a UIP deviation against the dollar, ψit = ψ̄t > 0.47 For comparison, a country’s
non-cooperative policy that eliminates the UIP deviation, ψit = 0, results in Et∆ẑit+1 = −ψ̄t < 0.

Therefore, the cooperative policy under-reacts to the UIP wedge in order to curb ine�cient capital
46Indeed, there are no �rst-order externalities in our environment when countries choose consumption of tradables subject

to intertemporal budget constraint. Although international asset markets are incomplete, the fact that there is only one
tradable good implies that there is no pecuniary externality (Geanakoplos and Polemarchakis 1986). Similarly, there is no
aggregate demand externality for risk sharing when monetary policy closes the output gap (cf. Farhi and Werning 2016). This
result contrasts with the ine�cient non-cooperative equilibrium in Fanelli and Straub (2021) when countries participate in a
“rat race” of reserve accumulation in a second-best world with redistributive FX interventions.

47For concreteness, consider a measurem0 > 0 of the world economy, corresponding to the US and dollar pegs combined,
with ψit = 0 for i ∈ [0,m0]. A measure m1 > 0 of countries, i ∈ (m0,m0 + m1], are constrained and face a correlated
dollar demand shock against their currencies, ψ̄ct ≡ 1

m1

∫m0+m1

m0
ψitdi > 0. The remaining countries, i ∈ (m0 + m1, 1]

are unconstrained, and adopt the cooperative policy ψit = ψ̄t = m1
m0+m1

ψ̄ct , where the last equality is the equilibrium
�xed point. Thus, unconstrained economies mimic the average behavior of the other countries — ψit = 0 of the dollarized
economy with measure m0 and ψ̄ct of the constrained countries with measure m1.
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in�ows from the constrained economies, emphasizing the complementarity in the use of FXI across
countries. Speci�cally, unconstrained FXI f∗it respond to both domestic currency demand shocks n∗it
and currency demand shocks in constrained economies n∗jt such that n∗it+f∗it and n∗jt+f∗jt — and, thus,
ψit and ψjt — comove. Interestingly, this ampli�es the equilibrium e�ect of the shock on ψ̄t and r∗t ,
resulting in larger capital in�ows and current account de�cits in the US, yet mitigates the aggregate
out�ow from the constrained economies.

Dominant currency spillovers We close this section by brie�y considering spillovers from US mon-
etary policy in a non-cooperative equilibrium characterized by Proposition 4. The multi-country setup
clari�es the central role of the bilateral exchange rates against the dollar when implementing a crawl-
ing peg and explains why most countries in the world — including the ones with weak trade linkages
to the US — use the dollar as an anchor currency in their monetary and FX policies (Ilzetzki, Reinhart,
and Rogo� 2019).48 Indeed, pegging to other currencies or baskets of currencies is suboptimal and
can potentially exacerbate the risk-sharing wedge by increasing σ̄2

it. The asymmetric role of the US
dollar exchange rate is not due to the speci�c form of currency market segmentation, but rather the
assumption that the dollar is the international funding currency.

The immediate implication of the dollar dominance is the highly asymmetric spillovers of the US
monetary policy. For example, a tightening of the US monetary stance lowers the dollar price of trad-
ables p∗Tt and leads to an appreciation of the dollar, eit ↑ for i ∈ (m0, 1]. To stabilize the exchange rate
against the dollar and reduce the risk-sharing wedge, other countries are required to lean against the
wind and raise their interest rates, which leads to a negative output gap xit < 0. Thus, even when
the US economy is small (m0 = 0), all countries import its monetary stance giving rise to the global
monetary cycle (Rey 2013, Egorov and Mukhin 2023).49

5 Robustness

The baseline model makes several strong assumptions to get a sharp characterization of the optimal
policy. This section relaxes some of these assumptions — in particular, allowing for staggered price
adjustment, expenditure switching in tradable goods, and incomplete pass-through — to evaluate ro-
bustness of our baseline results. Detailed derivations are relegated to Appendix A5.

5.1 Staggered prices

The assumption of fully rigid prices in the baseline analysis emphasizes our focus on the tradeo� be-
tween the output gap and international risk sharing. As a result, it removes domestic in�ation as a

48Similarly to Hassan, Mertens, and Zhang (2023), the goal of the peg in our model is to eliminate the UIP deviation, but
the anchor status of the dollar is due to the structure of �nancial markets, not the size of the US economy.

49This contrasts with a more symmetric global �nancial system under a gold standard. If gold is used as the international
funding vehicle, the risk-sharing conditions remain the same except that the relevant measure of risk σ̄2

it is now the volatility
of exchange rates against gold. Given a zero nominal return on gold, R∗t = 1, the price of tradables p∗Tt (in units of gold)
adjusts to implement the real rate of return r∗t required to clear the goods market. This eliminates the asymmetry of a
dominant currency, yet may lead to larger risk-sharing wedges due to a more volatile unit of account.
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policy consideration. We now generalize our results to an environment with staggered price adjust-
ment. In particular, we assume that there is a continuum of varieties of non-tradable goods with an
elasticity of substitution ε > 1 that are produced by monopolistic competitors. Firms are subject to
a Calvo (1983) friction and update prices with probability 1 − λ each period. We allow for markup
shocks νt and assume that a constant production subsidy is used to eliminate the steady-state markup
wedge.

The resulting planner’s problem is largely isomorphic to the baseline problem (15), but features
both non-tradable price in�ation πNt ≡ ∆ logPNt and the output gap xt in the welfare loss function:

1

2
E0

∞∑
t=0

βt
[
γz2

t + (1− γ)(x2
t + απ2

Nt)
]
, (25)

as well as an additional New-Keynesian Phillips curve (NKPC) constraint on the planner:

πNt = κxt + βEtπNt+1 + νt, (26)

where α ≡ ε/λ is the relative weight on in�ation in the welfare loss and κ = (1−λ)(1−βλ)
λ is the slope

of the NKPC. The planner is still subject to the country budget constraint (11) and the risk-sharing
condition (13). In contrast, the expenditure switching condition (2) now allows for real exchange rate
adjustment by means of domestic non-tradable in�ation, and hence we replace (12) with:

∆et = ∆q̃t + ∆xt −∆zt + πNt. (27)

Note that this constraint is equivalent to writing σ̄2
t = vart(q̃t+1 + xt+1 − ∆zt+1 + πNt+1) in the

risk-sharing condition (13).
To summarize, with staggered price adjustment, the planner minimizes (25) subject to (11), (13), (26)

and (27). By examining this problem, we see that the �rst best result in Propositions 1 generalizes to this
case, with optimal FXI f∗t = −n∗t still eliminating the UIP deviation and the risk-sharing wedge, zt = 0,
and optimal monetary policy choosing the optimal path of in�ation and the output gap {xt, πNt}, as
in the closed economy. In the absence of markup shocks in the NKPC, νt = 0, optimal monetary policy
delivers xt = πNt = 0. If in addition to νt = 0 we also have ∆q̃t = 0 (or, equivalently, q̃t = q̄)
then the divine coincidence result of Proposition 2 holds as before. Speci�cally, by �xing the nominal
exchange rate, et = q̄, the planner can simultaneously eliminate all gaps delivering the �rst-best allo-
cation zt = xt = πNt = 0 with a single policy instrument — the monetary peg. Therefore, our open
economy divine coincidence result extends the closed economy result by constructing the case where
there is no con�ict either domestically (between in�ation and output gap stabilization) or externally
(between domestic goals and expenditure switching).

Perhaps more surprisingly, the optimal policy away from the �rst-best — in particular, the crawling
peg result in Propositions 4 — also generalizes to the staggered price environment. To see this, notice
that the only interaction between the domestic economy and international risk sharing comes via the
nominal exchange rate depreciation in (27), which result in the xt+1 + πNt+1 term in the de�nition
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of σ̄2
t in the constraint set. This implies that the planner’s problem can be broken into two sequential

problems. First, solve for the optimal path of {xt, πNt} given the path of aggregate demand mt ≡
xt + πNt, and, second, solve for the optimal trade-o� between risk sharing zt and domestic conditions
summarized by mt. The latter problem is the same as in the baseline model, except that the output
losses x2

t are replaced with the overall welfare losses due to the output gap and in�ation. This implies
that the results about the second-best policies, including the optimal partial peg (16), extend to the
setup with partial price adjustment.

5.2 Terms of trade and incomplete pass-through

Other important limitation of the baseline model are the assumptions of no law of one price (LOP) de-
viations for tradables, of the e�cient terms of trade, and of the homogenous home and foreign tradable
goods. Following the normative open-economy literature (Galí and Monacelli 2005, Devereux and En-
gel 2003, Benigno and Benigno 2003), in this extension we switch from a model with a non-tradable and
a homogenous tradable good to a model with two tradable goods — a home good that is both consumed
domestically CHt and exported abroad C∗Ht and an imported foreign good CFt.

We maintain the assumption of log-linear preferences with Ct = C1−γ
Ht C

γ
Ft, with PHt and PFt

denoting the home-currency prices of the two goods. We further assume linear technology, AtLt =

CHt + C∗Ht, and CES demand for exports, C∗Ht = γP ∗−εHt C
∗
t , where P ∗Ht is the export price in foreign

currency, ε > 1 is the elasticity of foreign demand, andC∗t is the foreign demand shifter. For simplicity,
we assume that all prices are fully sticky in the currency of invoicing. Consistent with the evidence on
international prices (Gopinath, Boz, Casas, Díez, Gourinchas, and Plagborg-Møller 2020), we assume
that domestic prices are set in the local currency, while export prices are invoiced in dollars (DCP).
Appendix A5 provides detailed derivations and also discusses the alternative case of producer currency
pricing (PCP).

When trade prices are sticky in foreign currency, we have after normalization that PHt = 1,
PFt = Et and P ∗Ht = 1. That is, both export prices EtP ∗Ht and import prices PFt — as well as the
law of one price deviations EtP ∗Ht/PHt — comove one-to-one with the nominal exchange rate Et. In
contrast, the terms of trade are exogenous and stable independently of the shocks, PFt/(EtP ∗Ht) = 1,
a trademark feature of DCP economies (Gopinath and Itskhoki 2022). We de�ne the natural real ex-
change rate as Q̃t = γ

1−γ
C̃Ht
C̃Ft

, where (C̃Ht, C̃Ft) is the �rst-best consumption allocation. As a result,
the equilibrium condition in the goods market — the expenditure switching condition — is still given
by (12), et = q̃t + xt − zt, where now xt = cHt − c̃Ht and zt = cFt − c̃Ft are the domestic and import
consumption wedges. Since under DCP the export quantity is demand-determined and exogenous to
the policy, xt still corresponds to the output gap (the production wedge) and zt still corresponds to the
risk-sharing wedge. The equilibrium condition in the �nancial market (13) also remains unchanged.

What changes, however, is the welfare loss function (10) and the country budget constraint (11).
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Speci�cally, the planner’s problem now becomes:

min
{xt,zt,et,b∗t ,f∗t ,σ̄2

t }

1

2
E0

∞∑
t=0

βt
[
γz2

t + (1− γ)x2
t + γ(ε− 1)q̃2

t

]
,

subject to (12), (13) and βb∗t = b∗t−1 − (ε− 1)q̃t − zt.

Note the new term in the natural real exchange rate q̃t that represents both an additional source of
welfare losses and a deviation from the �rst-best path of net exports due to DCP sticky trade prices.
Movements in q̃t require an adjustment in the �rst-best terms of trade, which are constant under DCP
price stickiness. As a result, the export wedge is exogenous to both monetary and FX policy (Egorov
and Mukhin 2023), and the policymaker takes it as given and solves for the optimal path of endogenous
wedges {xt, zt}.

While it is still optimal to use monetary policy to close the output gap, xt = 0, it is no longer possible
to ensure the �rst-best path of imports and NFA, zt = b∗t = 0, when q̃t �uctuates. This is because
movements in q̃t result in deviations of export revenues from their �rst-best path, and thus imports must
adjust. Nonetheless, it is still optimal to use FXI to o�set currency demand shocks, f∗t = b∗t − n∗t , and
eliminate UIP deviations, ensuring Et∆zt+1 = 0. In this sense the results of Proposition 1 generalize
to this case. Interestingly, the divine coincidence from the baseline model (Proposition 2) extends fully
to the DCP economy: if the natural real exchange rate is stable, q̃t = 0, monetary policy alone can
implement the �rst-best allocation, xt = zt = b∗t = 0. Indeed, in this case, constant terms of trade are
e�cient and there is no export wedge. Finally, notice that exogenous shocks q̃t in the country budget
constraint do not a�ect any optimality conditions and, therefore, Theorems 1 and 2 still apply in this
setting. In particular, the second-best monetary policy (Proposition 4) still partially pegs the exchange
rate balancing the costs of the output gap xt and risk-sharing zt wedges.

Exchange rate disconnect Our baseline model assumes a unit elasticity of substitution and a com-
plete exchange rate pass-through into tradable prices. As we argue in Itskhoki and Mukhin (2021a),
both the low elasticity of substitution and the low pass-through elasticity facilitate the model’s ability
to match the disconnect in volatilities between exchange rates and macro aggregates in response to
�nancial shocks n∗t . In Appendix A5, we extend the baseline model to features CES demand between
tradables and non-tradables with elasticity θ > 0, as well as strategic complementarities in price set-
ting which generate pricing-to-market and incomplete pass-through α ∈ (0, 1) for tradable goods. We
show that the planner’s problem remains the same as in (15) except for the goods market equilibrium
condition (12), which now becomes:

et =
1

αθ

(
θq̃t + xt − zt

)
, where q̃t ≡

1

θ
(c̃Nt − c̃Tt).

Thus, both incomplete pass-through α < 1 and low elasticity of substitution θ imply that large move-
ments in the exchange rate are associated with muted expenditure switching e�ects in proportion
with αθ and, hence, lower volatility in macro quantities. At the same time, the policy problem remains
isomorphic to the baseline problem (15), and all our optimal policy results continue to hold.
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6 Conclusion

We study optimal exchange rate policy in an open economy with nominal rigidities in the goods market
and intermediation frictions in the international �nancial market. In contrast to the previous normative
literature, we use a framework that is consistent with major exchange rate properties (puzzles), includ-
ing evidence on the shifts between �oating and �xed exchange rate regimes. We develop a tractable
policy analysis framework that admits an intuitive linear-quadratic approximation to the planner’s
problem, yet is rich enough to accommodate the key policy trade-o�s, and in particular provides a
rationale for the “fear of �oating” observed in many small open economies.

We show that the �rst-best allocation can be implemented with inward-looking monetary policy
targeting in�ation to close the output gap in the goods market and FX interventions targeting fric-
tional UIP deviations in the asset market. Whenever FX policies are constrained or the UIP target is
unobservable, monetary policy is optimally used to balance out the goods market and �nancial market
wedges, with the weight on the latter increasing in the openness of the economy. When the natural
(�rst-best) real exchange rate is stable, both objectives can be achieved by means of a monetary peg, or
an optimal currency area. In this knife-edge benchmark, the goods market objectives do not need to be
compromised for the risk-sharing bene�ts associated with a stable exchange rate. More generally, op-
timal monetary policy implements a managed �oat or crawling peg/band by leaning against exchange
rate surprises, and more intensively so in periods of large capital (out)�ows associated with frictional
UIP deviations. We, further, discuss the bene�ts of forward-guidance and preemptive FX policies, as
well as complementarity of FX interventions in a cooperative global economy. Finally, we show that
capital controls are not necessary unless the policymaker wants to maximize its monopoly rents in the
home currency market.

Our analysis lays out promising avenues for future research emphasizing the main objects and
parameters for empirical measurement. This includes developing techniques to evaluate the key targets
of monetary and FX policy — the natural level of the real exchange rate and frictional UIP deviations
(Bekaert 1995, Kollmann 2005, Engel 2016, Kalemli-Özcan and Varela 2021). More work is also needed
to evaluate the elasticity of currency demand and how it depends on exchange rate regimes and varies
across countries (Hau, Massa, and Peress 2009, Koijen and Yogo 2020, Bahaj and Reis 2023, Beltran and
He 2023). We also hope that the approximation methods developed in this paper can be applied in
other environments, and in particular in the analysis of the e�ects of monetary policy on risk premia
and credit spreads of other assets beyond currency markets (Ray 2019, Caballero and Simsek 2022).
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A Appendix

Figure A1: Structure of currency markets

Home H/H Foreign H/H

Government Noise Traders

Arbitrageurs

Note: the �gure illustrates the structure of currency markets in the baseline version of the model. Home (foreign) households
can only trade home (foreign) currency bonds Bt (B∗t ), while the other agents exchange bonds in one currency for bonds
in the other currency: noise traders demand shocks Nt, N∗t are exogenous, arbitrageurs choose their portfolios Dt, D∗t to
maximize mean-variance preferences, and the government uses sterilized FX interventionsFt, F ∗t to maximize social welfare.

Figure A2: Optimal capital �ows and output gaps

(a) Path of zt: expected out�ow
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(b) Path of zt and xt: out�ow and ER shocks

Note: The �gure plot the optimal allocation {xt, zt} when FXI are unconstrained in all periods but t, i.e. µt+j = 0 for all
j 6= 0, and there is an expected unaccommodated capital out�ow at t, Et∆zt+1 = ω̄σ̄2

t (n∗t + f∗t − b∗t ) > 0. Left panel
describes the case when capital out�ow is expected, E0n

∗
t = n∗t > 0, and there are no further shocks. Right panel considers

the case where n∗t > Et−jn∗t > 0 and et+1 6= Etet+1, requiring the response of (xt+1, zt+1) to the exchange rate surprise.
The full analytical solution is provided in the end of Appendix A3.

37



Figure A3: Currency markets with capital controls

Note: the �gure illustrates the structure of currency markets in the extension with capital controls: households pay τht on
their savings, domestic intermediaries pay respectively τHt and τ∗Ht on their home- and foreign-currency positions, foreign
intermediaries pay τFt on their home-currency positions (see Section 4.1 for details).
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A1 Exact non-linear policy problem

As described in Sections 2.1–2.2, the Ramsey problem maximizes the household welfare in (1) over
policies {Rt, F ∗t } and the equilibrium allocation {CNt, CTt, B∗t , Et} and {σ2

t }, subject to the equilib-
rium system (2)–(3) and (6)–(7) (including the de�nition of σ2

t ), given the stochastic path of exogenous
variables {At, YTt, R∗t , N∗t } and subject to initial and transversality conditions on B∗t :

max
{Rt,F ∗t ,CNt,CTt,B∗t ,Et,σ2

t }t≥0

E0

∞∑
t=0

βt
[
γ logCTt + (1− γ)

(
logCNt −

CNt
At

)]
(A1)

subject to
B∗t
R∗t
−B∗t−1 = YTt − CTt,

βR∗tEt
CTt
CTt+1

= 1 + ωσ2
t

B∗t −N∗t − F ∗t
R∗t

,

βRtEt
CNt
CNt+1

= 1,

Et =
γ

1− γ
CNt
CTt

,

σ2
t = R2

t · vart

( Et
Et+1

)
,

where we used the non-tradable production function and market clearing CNt = Yt = AtLt to substi-
tute for Lt in the welfare function.50

First best The �rst-best allocation maximizes (A1) with respect to {CNt, CTt, B∗t+1} and subject to
the budget constraint only, removing the remaining four constraints. The optimality conditions for this
problem imply C̃Nt = At and {C̃Tt, B̃∗t+1} such that:

βR∗tEt
CTt
CTt+1

= 1

and the budget constraint holds, B∗t /R∗t −B∗t−1 = YTt − CTt.
When the two policy instruments — monetary policy and FXI, {Rt, F ∗t } — are available and un-

constrained, the �rst best allocation is feasible. This is because the two constraints on the policy prob-
lem (A1) — namely, the two Euler equations (withRt andR∗t , respectively), with the last two constraints
being static side equations de�ning Et and σ2

t — each feature an independent policy instrument which
can ensure that the respective constraint is relaxed.

50Note that one can alternatively rewrite the problem in terms of wagesWt, as in an equilibrium with sticky pricesPNt = 1
the labor supply condition implies Wt = PNtCNt = CNt, and monetary policy by controlling aggregate nomiunal expen-
diture PtCt, controls also the path of nominal wages, Wt = PNtCNt = (1− γ)PtCt.
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Speci�cally, decentralizing the �rst-best allocation requires a path of {Rt, F ∗t } such that:

βRtEt
At
At+1

= 1,

ωσ2
t

B∗t −N∗t − F ∗t
R∗t

= 0

and the implies path of the nominal exchange rate given by Ẽt = γ
1−γ

At
C̃Tt

. The two displayed equations
characterize the necessary path of policy outcomes R̃t and F̃ ∗t , leaving aside the conventional issue
of uniqueness of the decentralized equilibrium (see Atkeson, Chari, and Kehoe 2010). Therefore, the
�rst-best monetary policy eliminates the output gap, that is, ensures CNt = C̃Nt = At, while the �rst-
best �nancial market policy ensures a zero risk-sharing wedge. This happens when either ωσ2

t = 0, or
when F ∗t = B∗t − N∗t ; the latter corresponds to the case of Proposition 1, while the former to divine
coincidence of Proposition 2 (or trilemma models with ω = 0).51 The �rst-best path of NFA according
to the budget constraint is B̃∗t = R∗t (B̃

∗
t−1 + YTt − C̃Tt), and hence the optimal FXI is F̃ ∗t = B̃∗t −N∗t

when σ2
t = σ̃2

t = R̃2
t · vart

(
Ẽt/Ẽt+1

)
6= 0.

Optimality conditions We make the following substitution of variables:

Γt ≡
1

CNt
, βRtEt

Γt+1

Γt
= 1, Et =

γ

1− γ
1

ΓtCTt
, (A2)

where the last two conditions are implied by the constraints in (A1). We can thus recover the path of
{Rt, CNt, Et} from the path of {Γt, CTt}. As a result, the original policy problem (A1) is equivalent to:

max
{Γt,CTt,B∗t ,σ2

t }t≥0

E0

∞∑
t=0

βt
[
γ logCTt − (1− γ)

(
log Γt +

1

AtΓt

)]
(A1′)

subject to
B∗t
R∗t
−B∗t−1 = YTt − CTt,

βR∗tEt
CTt
CTt+1

= 1 + ωσ2
t

B∗t −N∗t − F ∗t
R∗t

,

σ2
t β

2C2
Tt(EtΓt+1)2 = Et(Γt+1CTt+1)2 − (EtΓt+1CTt+1)2,

where we used (A2) to solve out {Rt, Et} from the de�nition of σ2
t :

σ2
t =

=R2
t︷ ︸︸ ︷(

βEt[Γt+1/Γt]
)−2 ·

=vart(Et/Et+1)︷ ︸︸ ︷
(ΓtCTt)

−2
[
Et(Γt+1CTt+1)2 − (EtΓt+1CTt+1)2︸ ︷︷ ︸

=vart(Γt+1CTt+1)

]
,

resulting in the �nal constraint in (A1′). Note that we characterize the planner’s optimality conditions
for an arbitrary path of {F ∗t }, and then discuss the optimal path of {F ∗t }.

51Divine coincidence, of course, requires that Ẽt = γ
1−γ

At

C̃Tt
= const; otherwise, at least one of the two wedges cannot be

eliminated — either σ2
t 6= 0 and hence CTt 6= C̃Tt (for an arbitrary path of F ∗t 6= F̃ ∗t ), or CNt 6= C̃Nt = At under the peg

(with σ2
t = 0 that ensures CTt = C̃Tt for any path of F ∗t ).
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We write the Lagrangian for (A1′) as follows:

L0 = E0

∞∑
t=0

βt
[
γ logCTt − (1− γ)

(
log Γt +

1

AtΓt

)
+ Λt

(
B∗t−1 + YTt − CTt −

B∗t
R∗t

)
+Mt

(
1 + ωσ2

t

B∗t −N∗t − F ∗t
R∗t

− βR∗tEt
CTt
CTt+1

)
+Dt

(
β2σ2

tC
2
Tt(EtΓt+1)2 − Et(Γt+1CTt+1)2 + (EtΓt+1CTt+1)2

)]
,

where {Λt,Mt, Dt} is the sequence of Lagrange multipliers on the respective constraints. The �rst
order conditions with respect to {Γt, CTt, B∗t , σ2

t } are as follows:52

0 = −(1− γ)
1

Γt
+ (1− γ)

1

AtΓ2
t

+ 2β−1Dt−1CTt
(
β2σ2

t−1

C2
Tt−1

CTt
Et−1Γt − ΓtCTt + Et−1(ΓtCTt)

)
,

0 =
γ

CTt
− Λt −MtβR

∗
tEt

1

CTt+1
+Mt−1R

∗
t−1

CTt−1

C2
Tt

+ 2Dtβ
2σ2
tCTt(EtΓt+1)2 − 2β−1Dt−1Γt(ΓtCTt − Et−1(ΓtCTt)),

0 = − Λt
R∗t

+ βEtΛt+1 +Mt
ωσ2

t

R∗t
,

0 = Mtω
B∗t −N∗t − F ∗t

R∗t
+Dtβ

2C2
Tt(EtΓt+1)2.

where we de�ne D−1 = M−1 = 0, and we use the fact that operator Et{·} sums across future
realizations of uncertainty using conditional probabilities π(ht+1)/π(ht) for any history of exogenous
states ht+1 ≡ {As, YTs, R∗s}t+1

s=0

We simplify the conditions as follows. The last two conditions allow to relate the Lagrange multi-
pliers Λt and Dt with Mt:

Λt − βR∗tEtΛt+1 = Mtωσ
2
t , (A3)

D′t = Mtω(EtRt)2N
∗
t + F ∗t −B∗t

R∗t
, (A4)

where we used de�nitions (A2) in the second line and substituted D′t ≡
( γ

1−γ
)2
Dt. Next we simplify

the �rst optimality condition by substituting out σ2
t−1 using its de�nition (the third constraint of the

problem):

β(1− γ)(Xt − 1) = 2D′t−1

[
1

E2
t

− Et−1E−1
t

Et
− Γt

Et−1Γt

(
Et−1E−2

t − (Et−1E−1
t )2

)]
, (A5)

where we de�ned Xt ≡ CNt/At = 1/(AtΓt) so that Xt − 1 corresponds to the output gap. Note
that (A5) implies Et−1Xt = 1, as the conditional expectations of the right-hand side is zero. The �nal
optimality condition:

52Note that with an optimal unconstrained choice of F ∗t at t, we additionally have that Mt = 0, and therefore Dt = 0,
CNt+1 = 1/Γt+1 = At+1, Λt = βR∗tEtΛt+1 and βR∗tEt[CTt/CTt+1] = 1, consistent with conditions for the �rst best
allocation.
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γ
(

1− Λt
γ/CTt

)
− (1− γ)(Xt − 1) = MtβR

∗
tEt

CTt
CTt+1

−Mt−1R
∗
t−1

CTt−1

CTt
− 2D′tσ

2
t

(EtRt)2
+

2D′t−1σ
2
t−1

E2
t−1Rt−1

Γt
Γt−1

(A6)

= Mt

(
βR∗tEt

CTt
CTt+1

+ 2ωσ2
t
D∗t
R∗t

)
− β−1Mt−1

(
βR∗t−1

CTt−1

CTt
+ 2ωσ2

t−1

D∗t−1

R∗t−1

Γt
Et−1Γt

)
,

where we used D∗t = B∗t −N∗t − F ∗t .
Conditions (A3)–(A6) together with de�nitions in (A2) and constraints in (A1′) characterize the

optimal monetary policy for a given path of FXI {F ∗t } and the associated allocation.

A2 Approximations

A2.1 Second-order approximation to the objective function

Consider any allocation {CNt, CTt, Lt, B∗t } that satis�es production possibilities frontier for non-
tradables, CNt = AtLt, and the country budget constraint (6):

B∗t
R∗t

= B∗t−1 + YTt − CTt,

for a givemB∗−1 and a transversality condition onB∗∞, and corresponding to a stochastic path of shocks
{At, YTt, R∗t }. We refer to all such allocation as resource- and budget-feasible. The �rst best allocation
corresponding to the same path of shocks is denoted with {C̃Nt, C̃Tt, L̃t, B̃∗t }, it is also resource- and
budget-feasible, and satis�es the following optimality conditions (see Appendix A1):

C̃Nt = At, L̃t = 1, βR∗tEt
C̃Tt

C̃Tt+1

= 1.

A non-stochastic zero-NFA steady state corresponding to (Ā, ȲT , R̄
∗) such that R̄∗ = 1/β, is given by

(C̄N , C̄T , L̄, B̄
∗):

C̄N = Ā, L̄ = 1, C̄T = ȲT , B̄∗ = 0,

which implies NX = ȲT − C̄T = 0 and the steady state budget constraint is satis�ed. Finally, the
welfare function is given by (1).

Lemma A1 The second order Taylor expansion around a zero-NFA steady state (C̄N , C̄T , L̄) of the welfare
loss for any budget- and resource-feasible allocation {CNt, CTt, Lt} relative to the �rst-best allocation
{C̃Nt, C̃Tt, L̃t} is given by:

1

2
E0

∞∑
t=0

βt
[
γz2

t + (1− γ)x2
t

]
,

where zt = log(CTt/C̃Tt) and xt = log(CNt/C̃Nt). Therefore, it is su�cient to know the �rst-order
dynamics of the two wedges {xt, zt} to evaluate the second-order welfare loss.

Proof: We take a second order Taylor expansions of (1) for any resource- and budget-feasible alloca-
tion {CNt, CTt, Lt, Bt;At, YTt, R∗t } around a zero-NFA steady state (C̄N , C̄T , L̄, B̄

∗) = (Ā, ȲT , 1, 0),
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using log deviations:

cNt = log(CNt/C̄N ), cTt = log(CTt/C̄T ), at = log(At/Ā), yTt = log(YTt/ȲT ), r∗t = log(R∗t /R̄
∗),

and for NFA we use a proportional deviation relative to ȲT :

b̌∗t = B∗t /ȲT .

Note that the �rst best deviation and the wedge for non-tradables are c̃Nt = log(C̃Nt/Ā) = log(At/Ā) =

at and xt = log(CNt/C̃Nt) = cNt− c̃Nt = cNt−at. We also use the fact that for any resource-feasible
allocation Lt = CNt/At, and hence we solve out Lt from the welfare function.

We, therefore, can rewrite the welfare function (1) in terms of deviations as:

W0 = E0

∞∑
t=0

βt
[
γ log ȲT + (1− γ)(log Ā− 1) + γcTt + (1− γ)

[
log cNt −

(
ecNt−at − 1

)]]
,

as well as the �ow budget constraint (6) as:

b̌∗t−1 + eyTt − ecTt − βe−r∗t b̌∗t = 0,

using the fact that C̄T = ȲT and R̄∗ = 1/β. We characterize the welfare loss in two steps:

1. The second-order Taylor expansion for the non-tradable terms in W0 is:

E0

[
cNt −

(
ecNt−at − 1

)]
= E0

[
cNt − (cNt − at)︸ ︷︷ ︸

=at

−1

2
(cNt − at︸ ︷︷ ︸

=xt

)2
]

+ h.o.t.

= E0at −
1

2
E0x

2
t + h.o.t.,

and in the �rst best allocation xt = 0 as c̃Nt = at.

2. The second-order Taylor expansion to the �ow budget constraint is:

0 = b̌∗t−1 + yTt +
1

2
y2
Tt − cTt −

1

2
c2
Tt − βb̌∗t + βr∗t b̌

∗
t + h.o.t.,

which we use to express:

E0

∞∑
t=0

βtcTt = b̌∗−1 + E0

∞∑
t=0

βt
[
yTt +

1

2
y2
Tt −

1

2
c2
Tt + βr∗t b̌

∗
t

]
+ h.o.t.,

using the transversality condition for NFA deviations, limj→∞ β
j b̌t+j = 0. Evaluating relative
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to the �rst-best allocation, we have:

E0

∞∑
t=0

βtγc̃Tt − E0

∞∑
t=0

βtγcTt = E0

∞∑
t=0

βtγ
[1

2
c2
Tt −

1

2
c̃2
Tt − βr∗t b∗t

]
+ h.o.t.

=
1

2
E0

∞∑
t=0

βtγz2
t + E0

∑∞

t=0
βtγ
[
(cTt − c̃Tt)c̃Tt − βr∗t b∗t

]︸ ︷︷ ︸
=0+h.o.t.

+h.o.t.,

where we expanded cTt = zt + c̃Tt and denoted with b∗t = b̌∗t − b̃∗t = (B∗t − B̃∗t )/ȲT the
proportional deviation of the NFA position from the �rst best NFA. Finally, we show that:

0 = E0

∞∑
t=0

βtγ
[
(cTt − c̃Tt)c̃Tt − βr∗t b∗t

]
+ h.o.t.

= E0

∞∑
t=0

βt
[
(b∗t−1 − βb∗t )c̃Tt − βr∗t bt

]
+ h.o.t.

= b∗−1︸︷︷︸
=0

· c̃T0 + β

∞∑
t=0

βt E0

[
b∗t (∆c̃Tt+1 − r∗t )

]︸ ︷︷ ︸
=0+h.o.t.

+h.o.t.

The second line uses the expansion of the �ow budget constraint for cTt and c̃Tt, which implies:

(cTt − c̃Tt)c̃Tt =
(
b∗t−1 +

1

2
c̃2
Tt −

1

2
c2
Tt − βb∗t + βr∗t b

∗
t + h.o.t.

)
c̃Tt = (b∗t−1 − βb∗t )c̃Tt + h.o.t.

The third lines uses the fact that b∗−1 = b̌∗−1 − b̃∗−1 = 0 by the initial condition, and the opti-
mality condition (Euler equation) for the �rst-best consumption growth, which we rewrite in log
deviations as er∗t Ete−∆c̃Tt+1 = 1, and take the following second-order Taylor expansion:

Et∆c̃Tt+1 − r∗t =
1

2
(r∗t )

2 +
1

2
Et(∆c̃Tt+1)2 − r∗tEt∆c̃Tt+1 + h.o.t.

and therefore using the law of iterated expectations:

E0

[
b∗t (∆c̃Tt+1 − r∗t )

]
= E0

[
b∗t (Et∆c̃Tt+1 − r∗t )

]
= 0 + h.o.t.

Combining these results, we evaluate the welfare loss relative to the �rst-best allocation to be given by
W̃0 −W0 = 1

2E0
∑∞

t=0 β
t
[
γz2

t + (1− γ)x2
t

]
. �

Alternative approach We next provide an alternative proof of Lemma A1 based on a new method
of deriving quadratic loss functions. The central idea is to leverage the fact that the approximation is
taken in deviations from the e�cient allocation. The main advantage of the method is that it can be
applied much more easily and requires fewer derivations. To economize space, we use this approach
below to derive the loss function in most extensions of the baseline model.

To this end, consider a general optimization problem

max
x

F (x, ε) subject to G(x, ε) = 0,
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where x is a vector of endogenous variables, ε is a vector of shocks and G(·) is a vector function. The
corresponding Lagrangian is de�ned by

L(x, λ, ε) = F (x, ε) + λG(x, ε).

For a given value of ε, let x̃ = x̃(ε) and λ̃ = λ̃(ε) denote its saddle point (solution). As a point
of approximation consider (x, λ, ε) = (x̄, λ̄, 0) ≡

(
x̃(0), λ̃(0), 0

)
and use ∇F (x, ε) =

{
∂F
∂xi

}
i

and

∇2F (x, ε) =
{

∂2F
∂xi∂xj

}
i,j

to denote respectively the vector of �rst derivatives and the Hessian (with

∇G(x, ε) and∇2G(x, ε) de�ned symmetrically).

Lemma A2 For any feasible x, the second-order approximation of the loss function around (x̄, λ̄, 0) is

−1

2
dx′
[
∇2F (x̄, 0) + λ̄∇2G(x̄, 0)

]
dx, where dx ≡ x− x̃.

Proof: For any feasible allocation x, we have G(x, ε) = 0 and hence, L(x, λ, ε) = F (x, ε). Therefore,
it is su�cient to focus on the quadratic approximation to the Lagrangian. With some abuse of notation,
for a given value of ε, take the second-order Taylor expansion around (x̃, λ̃, ε):

L(x, λ, ε) =F (x̃, ε) + λ̃G(x̃, ε) +∇F (x̃, ε)dx+ λ̃∇G(x̃, ε)dx+ dλG(x̃, ε)

+
1

2
dx′
[
∇2F (x̃, ε) + λ̃∇2G(x̃, ε)

]
dx+ dλ∇G(x̃, ε)dx+O(ε3),

where dx ≡ x− x̃ and dλ ≡ λ− λ̃. The �rst-order optimality condition for x̃ implies

∇F (x̃, ε) + λ̃∇G(x̃, ε) = 0,

while the feasibility of x implies that

0 = G(x, ε) = G(x̃, ε) +∇G(x̃, ε)dx+O(ε2),

from which it follows that
dλ
[
G(x̃, ε) +∇G(x̃, ε)dx

]
= O(ε3).

Substitute these conditions into the Taylor expansion to obtain the second-order losses relative to the
e�cient allocation:

L(x̃, λ̃, ε)− L(x, λ, ε) = −1

2
dx′
[
∇2F (x̃, ε) + λ̃∇2G(x̃, ε)

]
dx+O(ε3)

= −1

2
dx′
[
∇2F (x̄, 0) + λ̄∇2G(x̄, 0)

]
dx+O(ε3),

where we used the fact that λ̃ = λ̄+O(ε), F (x̃, ε) = F (x̄, 0) +O(ε), G(x̃, ε) = G(x̄, 0) +O(ε). �

To apply this result in our setting, write down the Lagrangian for the planner’s problem

L = E0

∞∑
t=0

βt

{
γ logCTt + (1− γ)

(
logCNt −

CNt
At

)
+ λt

[
B∗t−1 + YTt − CTt −

B∗t
R∗t

]}
.
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Because the budget constraint is linear in B∗t and CTt, the second derivatives are equal to zero and,
according to Lemma A2, the second-order approximation to the loss function is given by

L̃−L =
1

2
E0

∞∑
t=0

βt

{
γ

(
CTt − C̃Tt

C̄T

)2

+(1−γ)

(
CNt − C̃Nt

C̄N

)2}
=

1

2
E0

∞∑
t=0

βt
[
γz2

t +(1−γ)x2
t

]
,

where we used the fact that zt = log(CTt/C̃Tt) = (CTt−C̃Tt)/C̄T+O(ε2) and xt = log(CNt/C̃Nt) =

(CNt − C̃Nt)/C̄N +O(ε2). The resulting expression is consistent with Lemma A1.53

A2.2 First-order approximation to the equilibrium system

Non-linear equilibrium system (2)–(3) and (6)–(7), and non-linear wedges:

Xt = CNt/C̃Nt = CNt/At and Zt = CTt/C̃Tt.

Steady state given by:

B̄∗ = F̄ ∗ = N̄∗ = 0, R̄ = R̄∗ = 1/β, C̄T = ȲT , C̄N = Ā,

and the associated exchange rates:

Ē = Q̄ =
γ

1− γ
C̄N
C̄T

,

as well as no steady state wedges, X̄ = Z̄ = 1.

Deviations De�ne for any (endogenous or exogenous) variable Yt with a non-zero steady state value
its log steady-state deviation yt as:

Yt = Ȳ eνyt for ν = 1,

and for net foreign assetsB∗t with a zero steady state value its deviation proportional to tradable steady
state output b∗t as:

B∗t = ȲT νb
∗
t for ν = 1.

For ν = 0, we get the steady state values of variables. We take the �rst order Taylor expansion of the
equilibrium system in ν around steady state ν = 0 and evaluated at ν = 1. The approximate system is
linear (scales) in ν, but is not necessarily linear in variables (deviations yt), as we see below.

53In general, Lemma A2 does not require that x̃ is the �rst best allocation as the system G(·) = 0 may include constraints
due to price stickiness and �nancial frictions. However, as long as the steady state is e�cient, λ̄ = 0 for the corresponding
constraints, and therefore they do not a�ect the quadratic loss function.
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First best allocation {C̃Nt, C̃Tt, B̃∗t , Q̃t} solves C̃Nt = At and:

Q̃t =
γ

1− γ
C̃Nt

C̃Tt
,

B̃∗t
R∗t
− B̃∗t−1 = YTt − C̃Tt,

βR∗tEt
C̃Tt

C̃Tt+1

= 1.

The �rst order Taylor expansion in ν to this system is given by c̃Nt = at and:

q̃t = at − c̃Tt,

βb̃∗t − b̃∗t−1 = yTt − c̃Tt,

Et∆c̃Tt+1 = r∗t ,

where {at, yTt, r∗t } are stochastic shocks (in proportional deviations) determining the dynamics of the
�rst-best allocation.

Proof: Substitute the de�nitions of variables in terms of ν-deviations into the non-linear system de-
scribing the �rst-best allocation

Q̄eνq̃t =
γ

1− γ
C̄N
C̄T

eν(c̃Nt−c̃Tt),

βe−νr
∗
t ȲT νb̃

∗
t − ȲT νb̃∗t−1 = ȲT e

νyTt − C̄T eνc̃Tt ,

eνr
∗
t Ete−ν∆c̃Tt+1 = 1,

where we used the fact that R̄∗ = 1/β. Using the steady state value of Q̄, and the fact that c̃Nt = at (as
C̃Nt = At), the �rst equation is immediately log-linear, q̃t = at − c̃Tt. Dividing the second equation
by ȲT , using the fact that C̄T = ȲT , and taking the Taylor expansion, we have:

(1− νr∗t +O(ν2))νβb̃∗t − νb̃∗t−1 = νyTt − νc̃Tt +O(ν2),

where O(ν2) denotes terms of order ν2 or higher (around ν = 0). Dividing by ν and eliminating
remaining O(ν) terms results in the �rst-order approximate equation. The �nal equation is expanded
as follows:

1 = Et{(1 + νr∗t +O(ν2))(1− ν∆c̃Tt+1 +O(ν2))} = Et{1 + νr∗t − ν∆c̃Tt+1 +O(ν2)}.

Subtracting 1 on both sides, dividing through by ν, and eliminating the remaining O(ν) terms results
in the �rst-order approximate equation. �
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Equilibrium system (2) and (6)–(7) is reproduced here as:

Et =
γ

1− γ
CNt
CTt

,

B∗t
R∗t
−B∗t−1 = YTt − CTt,

βR∗tEt
CTt
CTt+1

= 1 + ωσ2
t

B∗t −N∗t − F ∗t
R∗t

, σ2
t = R2

t · vart

( Et
Et+1

)
.

Rewrite this system in deviations from the �rst-best system:

Et = Q̃t
Xt

Zt
,

B∗t − B̃∗t
R∗t

− (B∗t−1 − B̃∗t−1) = −(CTt − C̃Tt),

βR∗tEt
ZtC̃Tt

Zt+1C̃Tt+1

− βR∗tEt
C̃Tt

C̃Tt+1

= ωσ2
t

B∗t −N∗t − F ∗t
R∗t

, σ2
t = R2

t · vart

( Et
Et+1

)
.

De�ne the following additional proportional deviation terms:

B∗t − B̃∗t = ȲT νb
∗
t , N∗t − B̃∗t = ȲT νn

∗
t , F ∗t = ȲT νf

∗
t

and
ω = ω0/ν

2,

for someω0 ≥ 0, so thatω is the value of risk-aversion at ν = 1, and the value of risk-aversion increases
as ν decreases towards 0 (the value of risk-aversion in steady state is irrelevant given the exact absence
of risk). Given this de�nitions, the �rst-order Taylor approximation in ν to the non-linear equilibrium
system around ν = 0 is given by:

et = q̃t + xt − zt,

βb∗t − b∗t−1 = −zt,

Et∆zt+1 = ω̄σ̄2
t (n
∗
t + f∗t − b∗t ), σ̄2

t = vart(∆et+1).

where ω̄ = ω0ȲT /β.

Proof: Following similar steps as above, we substitute the de�nitions of variables in terms of devia-
tions. The �rst line immediately results in et = q̃t + xt − zt, as the non-linear equation is, in fact, log
linear in variables. The second equation yields βb∗t − b∗t−1 = −zt following similar steps as above, and
additionally noting that

CTt − C̃Tt
ȲT

= eνcTt − eνc̃Tt = νzt +O(ν2),

where zt = cTt − c̃Tt by the de�nition of variables. Finally, the last equilibrium condition is expressed
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as follows:

eνr
∗
t Et
[
e−ν(∆zt+1+∆c̃Tt+1) − e−ν∆c̃Tt+1

]
= (ω0ȲT /β)

1

ν2
eν(2rt−r∗t )vart

(
e−ν∆et+1

)
ν(b∗t − n∗t − f∗t ),

after substituting in the expression for σ2
t and using R̄ = R̄∗ = 1/β to simplify. Dividing both sides

by eνr∗t , substituting in ω̄ = ω0ȲT /β, and taking a �rst-order Taylor expansion in ν yields:

Et
[
− ν∆zt+1 +O(ν2)

]
= ω̄(1 + 2ν(rt − r∗t ) +O(ν2))

1

ν2
vart

(
1− ν∆et+1 +O(ν2)

)
︸ ︷︷ ︸

=vart(−∆et+1+O(ν))=vart(∆et+1)+O(ν2)

ν(b∗t − n∗t − f∗t ),

Dividing both sides by ν and simplifying:

−Et∆zt+1 +O(ν) = ω̄(1 +O(ν))
(
vart(∆et+1) +O(ν2)

)
(b∗t − n∗t − f∗t )

= ω̄vart(∆et+1)(b∗t − n∗t − f∗t ) +O(ν).

Eliminating the remaining O(ν) terms yields the �rst-order approximate equation in ν, which is how-
ever not linear in variables (deviations). �

We also note that the side equation (3) that determines the path of Rt is approximated in the same
way as the other equations of the equilibrium system:

rt = Et∆cNt+1 = Et∆xt+1 + Et∆at+1.

Combining the equation for rt with Et∆c̃Tt+1 = r∗t results in the UIP deviation expression (14):

rt − r∗t − Et∆et+1 = Et∆xt+1 + Et∆at+1 − Et∆c̃Tt+1 − Et∆et+1

= Et{∆xt+1 + ∆q̃t+1 −∆et+1} = Et∆zt+1,

where we used the facts that et = q̃t + xt − zt and q̃t = at − c̃Tt. Note: since in our baseline model
there is no in�ation, P ∗Tt = PNt = 1, we have that it = rt and i∗t = r∗t , i.e. nominal and real interest
rates coincide.

Lemma A3 The solution to the approximate equilibrium system characterizes anO(ν) accurate dynam-
ics of the non-linear equilibrium system. Furthermore, ω̄σ̄2

t −βȲTωσ2
t = O(ν), where βȲT is the constant

of normalization.

Proof: We �rst formalize the claim. Consider an exact equilibrium path {CNt, CTt, Et, B∗t , σ2
t } that

corresponds to policies {Xt, F
∗
t } and shocks {At, YTt, R∗t , N∗t }, which also determine the �rst-best

allocation {C̃Nt, C̃Tt, B̃∗t , Q̃t}. Note that Xt = CNt/C̃Nt and Zt = CTt/C̃Tt. De�ne the exact devia-
tions from the steady state {x̂t, f̂∗t , ẑt, êt, b̂∗t , n̂∗t , q̃t} as:

Xt = eνx̂t , F ∗t = ȲT νf̂
∗
t , Zt = eνẑt , Et = Ēeνêt , B∗t − B̃∗t = ȲT νb̂

∗
t ,

N∗t − B̃∗t = ȲT νn̂
∗
t and Q̃t = Q̄eνq̃t for ν = 1.

We de�ne similarly {c̃Tt, r̂t, r̂∗t , ŷTt, ât}.
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Consider now an approximate equilibrium path {zt, et, b∗t , σ̄2
t } that emerges as a result of policies

{x̂t, f̂∗t } in response to shocks {n̂∗t , q̃t}. Then:

{zt, et, b∗t , ω̄σ̄2
t } − {ẑt, êt, b̂∗t , βȲTωσ2

t } = O(ν),

where σ̄2
t = vart(∆et+1), σ2

t = β−2e2νr̂t · vart(e
−ν∆êt+1), and ω = ω0/ν

2 in the exact system and
ω̄ = ω0ȲT /β in the approximate system for some constant ω0.

The proof of this formal claim follows from the �rst-order Taylor expansion of the equilibrium
system in exact deviations from the �rst best {ẑt, êt, b̂∗t }, described above, which we rewrite here as:

νêt = ν(q̃t + x̂t − ẑt),

βeνr̂
∗
t νb̂∗t − νb̂∗t−1 = −

(
eν(ẑt+c̃Tt) − eνc̃Tt

)
,

Ete−ν(∆ẑt+1+∆c̃Tt+1) − Ete−ν∆c̃Tt+1 =
ω0ȲT /β

ν2
e2ν(r̂t−r̂∗t )vart

(
e−ν∆êt+1

)
ν(b̂∗t − n̂∗t − f̂∗t ).

The �rst-order Taylor expansion of this exact system is:

êt = q̃t + x̂t − ẑt,

βb̂∗t − b̂∗t−1 = −ẑt +O(ν),

Et∆ẑt+1 = ω̄vart(∆êt+1)(n̂∗t + f̂∗t − b̂∗t ) +O(ν),

while the approximate system for {zt, et, b∗t } is:

et = q̃t + x̂t − zt,

βb∗t − b∗t−1 = −zt,

Et∆zt+1 = ω̄vart(∆et+1)(n̂∗t + f̂∗t − b̂∗t ),

Therefore, the di�erence between the exact solution {ẑt, êt, b̂∗t } and the approximate solution {zt, et, b∗t }
vanishes with O(ν). Furthermore:

ωσ2
t =

ω0

ν2
β−2e2νr̂tvart−1

(
e−ν∆êt+1

)
=
ω0

β2
vart−1(∆êt+1) +O(ν) =

1

βȲT
ω̄σ̄2

t +O(ν),

where the last equality holds because vart(∆êt+1) − vart(∆et+1) = O(ν2) as {êt} − {et} = O(ν),
and we used ω̄ = ω0ȲT /β. �

50



A2.3 Optimal policies

Set up a Lagrangian for the policy problem (15) for any given path of {f∗t }:

`0 = E0

∞∑
t=0

βt

[
1

2

(
γz2

t + (1− γ)x2
t

)
− γλt

(
b∗t−1 − zt − βb∗t

)
(A7)

− γµt
(
Et∆zt+1 − ω̄σ̄2

t (n
∗
t + f∗t − b∗t )

)
− δt

(
σ̄2
t − Et(q̃t+1 + xt+1 − zt+1)2 +

(
Et(q̃t+1 + xt+1 − zt+1)

)2)]
,

where we substituted in the expression for et = q̃t + xt − zt and replaced σ̄2
t = vart(∆et+1) =

Ete2
t+1− (Etet+1)2. Note the analogy with the non-linear Lagrangian L0 in Appendix A1; the fact that

we have negatives in front of the constraints in the approximate problem re�ects the fact that we are
minimizing welfare loss, in contrast to maximizing welfare in the exact problem.

The optimality conditions with respect to {xt, zt, b∗t , σ̄2
t } are:

0 = (1− γ)xt + 2β−1δt−1(et − Et−1et),

0 = γzt + γλt + (γµt − β−1γµt−1)− 2β−1δt−1(et − Et−1et),

0 = β(γλt − Etγλt+1)− γµtω̄σ̄2
t ,

0 = γµtω̄(n∗t + f∗t − b∗t )− δt.

where we de�ne δ−1 = µ−1 = 0. After simpli�cation:

β(1− γ)xt = −2δt−1(et − Et−1et),

γzt + (1− γ)xt = −γλt − γ(µt − β−1µt−1),

λt − Etλt+1 = β−1µtω̄σ̄
2
t ,

δt = γµtω̄(n∗t + f∗t − b∗t ).

These optimality conditions, together with the constraints in the policy problem (A7) characterize the
optimal monetary policy {xt} for a given path of FXI {f∗t } and the associated equilibrium allocation.

Lemma A4 The optimality conditions for the approximate policy problem (A7) correspond to the �rst-
order Taylor expansion (in ν around ν = 0) of the non-linear optimality conditions for the exact policy
problem (A1′).

Proof: Given Lemma A3, it remains to show that the �rst-order Taylor expansion of the exact opti-
mality conditions (A3)–(A6) results in the same system of equations as the �rst order conditions to the
approximate problem (A7) given above.

In addition to the de�nitions of ν-deviations of variables in Appendix A2, we de�ne the deviations
for multipliers {Mt,Λt, Dt} in the Lagrangian L0 for the exact policy problem (A1′):

Λt = Λ̄eνλt , Mt = M̄νµt, D′t = D̄′δt,
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where Λ̄ = γ/C̄T = γ/ȲT , M̄ = γ, and D̄′ = Ē2 are proportional scalers. Note that Mt and D′t
are equal to zero in a zero-NFA steady state; furthermore, there is only a zero-order component of D′t,
which can be veri�ed by generalizing D′t = D̄′δt + νdt + O(ν2) and showing that dt ≡ 0 using our
approximation below.54

Consider �rst the expansion of (A3)–(A6):

Λ̄
(
eνλt − eνr∗t Eteνλt+1

)
= M̄νµt

ω0

ν2
β−2e2νrtvart

(
e−ν∆et+1

)
,

D̄′δt = M̄νµt
ω0/β

ν2
Ē2e2ν(et+rt)−νr∗t ȲT ν(n∗t + f∗t − b∗t ),

β(1− γ)(eνxt − 1) =
2D̄′

Ē2
δt−1

[
e−2νet − e−νetEt−1e

−νet − e−νcNt

Et−1e−νcNt

(
Et−1e

−2νet − (Et−1e
−νet)2

)]
,

γ
(
1− eν(λt+cTt)

)
− (1− γ)(eνxt − 1) = M̄νµt

(
eνr
∗
t Ete−∆cTt+1 + 2ωσ2

t βe
−νr∗t ν(n∗t + f∗t − b∗t )

)
− β−1M̄νµt−1

(
eνr
∗
t−1−∆cTt + 2ωσ2

t−1βe
−νr∗t−1ν(n∗t + f∗t − b∗t )

e−νcNt

Et−1e−νcNt

)
,

where we used ω = ω0/ν and Γt = 1/CNt = e−νcNt/Ā . We take a �rst order Taylor expansion in ν
around ν = 0:

νλt − νr∗t − Etνλt+1 +O(ν2) = β−1µtν(1 + 2νrt +O(ν2))
(
vart(∆et+1) +O(ν2)

)
,

δt = γµtω̄
(
1 + 2ν(et + rt)− νr∗t +O(ν2)

)
(n∗t + f∗t − b∗t ),

β(1− γ)νxt = 2δt−1

[
− ν(et − Et−1et) +O(ν2)−

(
1 +O(ν)

)
O(ν2)

]
,

−γν(λt + cTt) +O(ν)− (1− γ)νxt = γνµt
(
1 +O(ν)

)
− β−1γνµt−1

(
1 +O(ν)

)
,

where we used the de�nitions of (Λ̄, M̄ , D̄′) and ω̄ = ω0ȲT /β, and the result in Lemma A3 that
ωσ2

t − ω̄σ̄2
t = O(ν) and νω̄σ̄2

t = O(ν). Dividing all equations (except for the second line) by ν and
grouping together the remaining higher order terms, we obtain:

λ̄t − Etλ̄t+1 = β−1µtω̄σ̄
2
t +O(ν),

δt = γµtω̄(n∗t + f∗t − b∗t ) +O(ν),

β(1− γ)xt = −2δt−1(et − Et−1et) +O(ν),

γzt + (1− γ)xt = −γλ̄t − (γµt − β−1γµt−1) +O(ν),

where σ̄2
t = vart(∆et+1), and we used the optimality condition for the �rst best tradable consumption,

r∗t = Et∆c̃Tt+1, the de�nition of zt = cTt−c̃Tt, and additionally denoted with λ̄t = λt+c̃Tt. Dropping
the higher order terms O(ν), this system corresponds to the optimality conditions of the approximate
problem. �

54Note from the solution that δt−1 is the slope of the policy rule, β(1−γ)xt = −2δt−1(et−Et−1et) and, just like ω̄σ̄2
t , it

does not scale with ν, while other deviations (in particular, those of Xt and Et) scale proportionally with ν. In other words,
the risk premium and the slope of the optimal policy are zero order in ν.
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A3 Derivations and Proofs for Section 3

Proof of Theorem 1 Consider the optimality conditions for the approximate policy problem (A7)
derived in Appendix A2.3. In particular, the �rst and the last optimality conditions (with respect to xt
and σ2

t ) are given by:

β(1− γ)xt = −2δt−1(et − Et−1et),

δt = γµtω̄(n∗t + f∗t − b∗t ),

and we write the former condition for t+ 1:

xt+1 = − 2

β(1− γ)
δt(et − Et−1et).

Therefore, a rescaled δt := 2δt/[β(1− γ)] is the monetary policy lean against exchange rate surprises
at t + 1, and since it is predetermined at t, we have Etxt+1 = 0. Additionally rescaling µt := β−1µt

the Lagrange multiplier on the risk-sharing constraint Et∆zt+1 = ω̄σ̄2
t (n
∗
t + f∗t − b∗t ) completes the

proof. �

Proof of Proposition 1 Consider the approximate policy problem (A7) where the choice of FXI f∗t is
unconstrained, and therefore we have an additional optimality condition:

µt = 0 for all t.

From the other optimality conditions, we have xt = δt = 0 for all t ≥ 0, as well as:

Et∆λt+1 = −Et∆zt+1 = 0,

which together with the budget constraint implies zt = b∗t = 0 for all t as the unique solution. Conse-
quently, et = q̃t, and σ̄2

t = vart(∆q̃t+1). Finally, Et∆zt+1 = 0 requires:

ω̄σ̄t(n
∗
t + f∗t − b∗t ) = 0,

and thus generically FXI must satisfy:

f∗t = b∗t − n∗t = −n∗t .

Note that f∗t = −n∗t guarantees zt = b∗t = 0 as the unique equilibrium, as the non-linear system:

Et∆zt+1 = −ω̄σ̄2
t b
∗
t , σ̄2

t = vart(q̃t+1 − zt+1),

βb∗t − b∗t−1 = −zt

has a unique stable solution zt = b∗t = 0.
Lastly, consider the discretionary solution with the planner choosing the optimal policy as a func-

tion of natural state variables (b∗t−1, q̃t, n
∗
t ). This implies that private agents form their expectations

53



about future policies zt+1 = z(b∗t , q̃t+1, n
∗
t+1) and xt+1 = x(b∗t , q̃t+1, n

∗
t+1). The only way the planner

can credibly manipulate the beliefs in period t in the absence of commitment is by changing the future
state b∗t . The resulting policy problem corresponds to �nding the Markov perfect equilibrium:

V (b∗, q̃, n∗) = min
{z,x,f∗,b∗′,σ2}

1

2

[
γz2 + (1− γ)x2

]
+ βE

[
V (b∗′, q̃′, n∗′)|q̃, n∗

]
(A8)

subject to βb∗′ = b∗ − z,

E
[
z(b∗′, q̃′, n∗′)|q̃, n∗

]
= z + ω̄σ2(n∗ + f∗ − b∗),

σ2 = var
(
q̃′ + x(b∗′, q̃′, n∗′)− z(b∗′, q̃′, n∗′)|q̃, n∗

)
,

where functions x(·) and z(·) should be consistent with the solution to this policy problem. Following
the primal approach, observe that given a free choice of f∗, the latter two constraints do not bind. It
follows that the x(b∗, q̃, n∗) = 0 and problem reduces to

V (b∗, q̃, n∗) = min
b∗′

γ

2

(
b∗ − βb∗′

)2
+ βEV (b∗′, q̃′, n∗′).

A combination of the �rst-order and envelope conditions implies that z(b∗, q̃, n∗) = (1 − β)b∗. It
follows from b∗−1 = 0 that zt = b∗t = 0 and the discretionary policy implements the same allocation
as the optimal policy under commitment. This allocation is also supported by the same prices, FXI and
monetary policy. �

Proof of Proposition 2 Consider the case with q̃t ≡ q̄ = 0 for all t, the latter equality without loss of
generality given our notation in terms of deviations. Then the equilibrium system becomes:

et = xt − zt,

βb∗t − b∗t−1 = −zt,

Et∆zt+1 = ω̄σ̄2
t (n
∗
t + f∗t − b∗t ), σ̄2

t = vart(∆et+1),

and it is consistent with a xt = zt = b∗t = σ2
t = 0 equilibrium for all t independently of {n∗t , f∗t }. Since

this corresponds to the �rst best, achieving the global minimum of the welfare loss objective, it is the
solution to the optimal policy problem (A7). Indeed, with λt = µt = δt = 0 for all t, all optimality
conditions of (A7) are satis�ed, and in particular (16) in Theorem 1 holds irrespective of {n∗t , f∗t }.

In general, when q̃t = 0 and xt = 0, there exist other equilibria with σ2
t > 0, such that:

βb∗t − b∗t−1 = −zt,

Et∆zt+1 = ω̄σ̄2
t (n
∗
t + f∗t − b∗t ), σ̄2

t = vart(zt+1),

and thus output gap targeting, xt = 0, does not guarantee zt = b∗t = 0 as the unique equilibrium.
In contrast, a policy rule that targets the exchange rate, xt = −δ(et − Et−1et) with δ → ∞, ensures
xt = zt = b∗t = σ2

t = 0 as the only equilibrium outcome. Indeed, such a rule implies, using et = xt−zt,
that xt = − δ

1+δ (zt − Et−1zt) = −(zt − Et−1zt) as δ → ∞. This, in turn, means et = Et−1et and
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σ2
t = 0, which ensures zt = b∗t = 0, and hence xt = 0, irrespectively of {n∗t , f∗t }. �

Proof of Proposition 3 Without commitment, the planner solves problem (A8) with an additional
constraint that the path of f∗t is exogenous. Given the values of state variables (b∗, q̃, n∗), there are
three endogenous variables (b∗′, z, σ2) in the three constraints of the problem. It follows that the choice
of x a�ects the nominal exchange rate e = q̃+x−z, but not capital �ows n∗+f∗−b∗ or UIP deviations
E
[
z(b∗′, q̃′, n∗′)|q̃, n∗

]
− z. Neither does it change the risk-sharing wedge z or the continuation value

V (b∗′, q̃′, n∗′), which implies that it is optimal for the monetary policy to set x = 0. �

Proof of Proposition 4 Rescale µt := β−1µt for this proof. Let f∗t be chosen optimally at all t ≥ 1,
but �xed exogenously at f∗0 at t = 0. This generalizes to any t ≥ 0 (see a general solution following
the proof of Proposition 5 below). Note that an unconstrained choice of f∗t for t > 0 implies µt = 0,
which further implies δt = 0, xt+1 = 0 and Etλt+1 = λt. We then have (using optimality conditions
for (A7) and Theorem 1):

µt = 0 ∀t ≥ 1 ⇒ xt = 0 ∀t 6= 1, E0x1 = 0 and (1−γ)x1 = 2µ0ω̄(n∗0+f∗0−b∗0)(e1−E0e1),

as well as Et∆λt+1 = 0 for all t ≥ 1 and βb∗0 = −z0. Furthermore, γzt = λt for all t ≥ 2 (since
xt = µt = 0 for all t ≥ 1), and therefore:

∀t ≥ 2 : γEt∆zt+1 = Et∆λt+1 = 0 ⇒ f∗t = b∗t − n∗t .

We use γzt + (1 − γ)xt = λt + βµt − µt−1 for t = 0, 1 together with E0∆λ1 = −ω̄σ̄2
0µ0 and

E0∆z1 = ω̄σ̄2
0(n∗0 + f∗0 − b∗0) to solve for:

µ0 =
γω̄σ̄2

0

1 + β + ω̄σ̄2
0

(n∗0 + f∗0 − b∗0),

x1 = − 2ω̄γ

1− γ
ω̄σ̄2

0

1 + β + ω̄σ̄2
0

(n∗0 + f∗0 − b∗0)2(e1 − E0e1),

e1 − E0e1 =
(q̃1 − z1)− E0(q̃1 − z1)

1 + 2ω̄γ
1−γ

ω̄σ̄2
0

1+β+ω̄σ̄2
0
(n∗0 + f∗0 − b∗0)2

,

where σ̄2
0 = var0(e1) and we used e1−E0e1 = x1 +(q̃1− z̃1)−E0(q̃1−z1). This provides the equation

used in Proposition 4 as functions of endogenous b∗0 and σ̄2
0 , which we characterize next.

We use optimality condition γzt + (1− γ)xt = λt + βµt − µt−1 in di�erence at t = 2:

γ∆z2 = (1− γ)x1 + µ0 = − γω̄σ̄2
0

1 + β + ω̄σ̄2
0

(n∗0 + f∗0 − b∗0) [1 + 2ω̄(n∗0 + f∗0 − b∗0)(e1 − E0e1)]

because ∆λ2 = E1∆λ2 = 0 as there is no uncertainty in (xt, zt, b
∗
t ) after t = 1. We solve for f∗1 from:

ω̄σ̄2
1(n∗1 + f∗1 − b∗1) = E1∆z2 = ∆z2 = − ω̄σ̄2

0

1 + β + ω̄σ̄2
0

(n∗0 + f∗0 − b∗0) [1 + 2ω̄(n∗0 + f∗0 − b∗0)(e1 − E0e1)] ,
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where σ̄2
1 = var1(e2) = var1(q̃2) = σ2

q̃ . Note that βb∗1 = b∗0 − z1 = −β−1z0 − z1, and then βb∗t =

b∗t−1 − z2 for t ≥ 2.
Finally, we close by solving for (z0, z1, z2) from the intertemporal budget constraint

z0 + βz1 +
β2

1− β
z2 = 0, zt = z2 ∀t ≥ 2,

and given solution for ∆z2 and E0∆z1 = ω̄σ̄2
0(n∗0 + f∗0 − b∗0), and hence we have:

b∗0 = −β−1z0 = E0[∆z1+β∆z2] =
1 + ω̄σ̄2

0

1 + β + ω̄σ̄2
0

ω̄σ̄2
0(n∗0+f∗0−b∗0) ⇒ b∗0 =

(1 + ω̄σ̄2
0)ω̄σ̄2

0

β + (1 + ω̄σ̄2
0)2

(n∗0+f∗0 )

and
n∗0 + f∗0 − b∗0 =

1 + β + ω̄σ̄2
0

β + (1 + ω̄σ̄2
0)2

(n∗0 + f∗0 ).

Then we solve:

z1 = (1−β)b∗0−β∆z2 =
ω̄σ̄2

0(n∗0 + f∗0 )

β + (1 + ω̄σ̄2
0)2

[
(1− β)(1 + ω̄σ̄2

0) + β

(
1 + 2ω̄

1 + β + ω̄σ̄2
0

β + (1 + ω̄σ̄2
0)2

(n∗0 + f∗0 )ẽ1

)]
,

where ẽ1 ≡ e1 − E0e1, so that:

z1 − E0z1 =
2βω̄2σ̄2

0(1 + β + ω̄σ̄2
0)

[β + (1 + ω̄σ̄2
0)2]2

(n∗0 + f∗0 )2ẽ1,

x1 = − 2γ

1− γ
ω̄2σ̄2

0(1 + β + ω̄σ̄2
0)

[β + (1 + ω̄σ̄2
0)2]2

(n∗0 + f∗t )2ẽ1,

ẽ1 =
q̃1 − E0q̃1

1 + [γ + β(1− γ)]
2ω̄2σ̄2

0(1+β+ω̄σ̄2
0)

(1−γ)[β+(1+ω̄σ̄2
0)2]2

(n∗0 + f∗0 )2

so that σ̄2
0 solves the �xed point:

σ̄2
0 =

(
1 + [γ + β(1− γ)]

2ω̄2σ̄2
0(1 + β + ω̄σ̄2

0)

(1− γ)[β + (1 + ω̄σ̄2
0)2]2

(n∗0 + f∗0 )2

)−2

σ2
q̃ ,

completing the characterization. �

Proof of Theorem 2 For any given path {xt}, consider the optimality conditions for zt, b∗t and σ̄2
t in

problem (A7):

0 = zt + λt + (βµt − µt−1)− 2δt−1(et − Et−1et),

Etλt+1 − λt = −µtω̄σ̄2
t ,

δt = µtω̄(n∗t + f∗t − b∗t ).
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Writing the �rst condition in expected �rst di�erence at t and using the other two conditions to sub-
stitute out δt and λt, we have:(

1 + β + ω̄σ2
t

)
µt − βEtµt+1 −

[
1 + 2ω̄(n∗t−1 + f∗t−1 − b∗t−1)(et − Et−1et)

]
µt−1 = Et∆zt+1,

which corresponds to equation (18). The risk-sharing condition requires additionally that Et∆zt+1 =

ω̄σ2
t (n
∗
t + f∗t − b∗t ). If the constraint f∗t ∈ Ft is binding, this determines the value of Et∆zt+1 and,

thus, µt. If f∗t is unconstrained, then µt = 0. �

Proof of Proposition 5 We follow Marcet and Marimon (2019) and rewrite the planner’s problem (A7)
in a recursive form. To this end, let zet = Etzt+1 denote agents’ expectations and use optimal policy
rule from Theorem 1:

xt+1 = −δ̄t(q̃t+1 − zt+1 + zet ), δ̄t ≡
δt

1 + δt
,

where for brevity we use q̃t+1 to denote deviations of the natural real exchange rate from conditional
expectation in period t. Take a timeless perspective with the planner committing to state-contingent
policies before the realization of shocks and rewrite the corresponding Lagrangian as follows:

`0 = E0

∞∑
t=0

βt

{
1

2

[
γz2

t + (1− γ)δ̄2
t−1(q̃t − zt)2 − (1− γ)δ̄2

t−1(zet−1)2
]
− γµt

[
zet − zt − ω̄σ̄2

t (n
∗
t + f∗t − b∗t )

]
+ φt

[
(1− δ̄t)2Et(q̃t+1 − zt+1)2 − (1− δ̄t)2(zet )

2 − σ̄2
t

]
+ γλt(βb

∗
t − b∗t−1 + zt) + ξt(z

e
t − Etzt+1)

}

= E0

∞∑
t=0

βt

{
1

2

[
γz2

t + (1− γ)δ̄2
t−1(q̃t − zt)2 − β(1− γ)δ̄2

t (z
e
t )

2
]
− γµt

[
zet − zt − ω̄σ̄2

t (n
∗
t + f∗t − b∗t )

]
+
φt−1

β
(1− δ̄t−1)2(q̃t − zt)2 − φt(1− δ̄t)2(zet )

2 − φtσ̄2
t + γλt(βb

∗
t − b∗t−1 + zt) + ξtz

e
t −

ξt−1

β
zt

}
.

The �rst-order condition with respect to δ̄t implies that[
β(1− γ)δ̄t − 2φt(1− δ̄t)

][
Et(q̃t+1 − zt+1)2 − (zet )

2
]

= 0

and hence, the Lagrange multiplier φt is proportionate to δt = δ̄t
1−δ̄t

:

φt =
β(1− γ)

2

δ̄t
1− δ̄t

.

From the Lagrangian, it follows that the problem can be written recursively with �ve state variables
(b∗t−1, q̃t, n

∗
t , δ̄t−1, ξt−1), where ξt is the Lagrange multiplier on zet = Etzt+1.

Take the optimality conditions with respect to σ̄2
t and zet :

φt = γµtω̄(n∗t + f∗t − b∗t ) and ξt = β(1− γ)δ̄2
t z
e
t + 2φt(1− δ̄t)2zet + γµt.

Thus, if µt−1 = 0, then φt−1 = 0, which implies δt−1 = δ̄t−1 = 0 and ξt−1 = 0. It follows that
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both promise-keeping constraints are not binding (as Lagrange multipliers φt−1 = ξt−1 = 0) and —
conditional on the value of b∗t — the optimal policy does not depend on the previous history of shocks.

If additionally µt = 0, then by the same logic δt = 0, which according to Proposition 3, coincides
with the optimal discretionary policy. Furthermore, the time consistency of FXI from Proposition 1
carries over to the case when interventions might be constrained in the future.

Finally, when µt−1 = µt = Etµt+1 = 0, Theorem 2 implies that the optimal FXI closes the UIP
wedge Et∆zt+1 = 0, while Theorem 1 ensures that δt = 0. �

Example with a full analytical solution Consider the case where FX is constrained only at t = s > 0

and unconstrained for all other t 6= s. Then µt = 0 for all t 6= s and µs 6= 0. Also denote n̂∗s ≡ n∗s +f∗s ,
which is given exogenously. For simplicity we assume thatEtn̂∗s = n̄∗s for all t < s and, in general, n̄∗s 6=
n̂∗s . We also assume that Etσ̄2

s = σ̄2
s for all t ≤ s to avoid extra notation. The system of constraints and

optimality conditions that determines the equilibrium path of the economy {xt, f∗t , zt, et, b∗t } consists
of (11)–(13), (16) and (18). Given this system and µt = 0 for t 6= s, we have:

xt = 0 ∀ t 6= s+ 1,

xs+1 = − 2γω̄

1− γ
ω̄σ̄2

s

1 + β + ω̄σ̄2
s

(n̂∗s − b∗s)2(es+1 − Eses+1),

Et∆zt+1 = 0 ∀ t < s− 1 and t > s+ 1,

Es−1∆zs = −βEs−1µs = −βω̄σ̄2
s(n̄
∗
s − b∗s),

Es∆zs+1 = (1 + β + ω̄σ̄2
s)µs = ω̄σ̄2

s(n̂
∗
s − b∗s),

Es+1∆zs+2 = −µs
[
1 + 2ω̄(n̂∗s − b∗s)(es+1 − Eses+1)

]
= − ω̄σ̄

2
s(n̂
∗
s − b∗s)

1 + β + ω̄σ̄2
s

[
1 + 2ω̄(n̂∗s − b∗s)(es+1 − Eses+1)

]
,

where we used risk-sharing at t = s, Es∆zs+1 = ω̄σ̄2
s(n̂
∗
s − b∗s), to solve out µs = ω̄σ̄2

s
1+β+ω̄σ̄2

s
(n̂∗s − b∗s),

and the fact that b∗s is predetermined at s − 1. Note that risk-sharing conditions for t 6= s act as
side-equations to pin down the value of unconstrained FXI f∗t that ensures µt = 0.

To solve for {zt}, it remains to apply the intertemporal budget constraint as of t ≤ s − 1 (prior
to realization of uncertainty), at t = s (conditional on realization of n̂∗s), and for t ≥ s + 1 (with full
information about n̂∗s and es+1), respectively. It can be shown that:

zt = −βs+1 ω̄σ̄2
s

1 + β + ω̄σ̄2
s

ω̄σ̄2
s(n̄
∗
s − b∗s) ∀ t ≤ s− 1,

zs = − βω̄σ̄2
s

1 + β + ω̄σ̄2
s

[(
1 + βsω̄σ̄2

s

)
(n̄∗s − b∗s)−

(
1 + ω̄σ̄2

s

)
(n̂∗s − n̄∗s)

]
,

zs+1 =
ω̄σ̄2

s

1 + β + ω̄σ̄2
s

[(
1 + (1− βs+1)ω̄σ̄2

s

)
(n̄∗s − b∗s) +

(
1 + (1− β)ω̄σ̄2

s

)
(n̂∗s − n̄∗s) + 2ω̄β(n̂∗s − b∗s)2ẽs+1

]
,

zt =
ω̄σ̄2

s

1 + β + ω̄σ̄2
s

[
(1− βs+1)ω̄σ̄2

s(n̄
∗
s − b∗s) + (1− β)ω̄σ̄2

s(n̂
∗
s − n̄∗s)− (1− β)2ω̄(n̂∗s − b∗s)2ẽs+1

]
∀ t ≥ s+ 2,

where ẽs+1 ≡ es+1 − Eses+1, and:
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b∗s =
1− βs

1− β
βω̄σ̄2

s

1 + β + ω̄σ̄2
s

ω̄σ̄2
s(n̄
∗
s − b∗s),

which allows us to solve out all endogenous variables and fully characterize the equilibrium {zt, b∗t }.
Finally, the surprise exchange rate movement at t = s+ 1 is ẽs+1 = q̃s+1 − Esq̃s+1 + xs+1 − (zs+1 −
Eszs+1), and using the solution for xs+1 and zs+1 this results in:

es+1 − Eses+1 =
q̃s+1 − Esq̃s+1

1 + 2ω̄ γ+β(1−γ)
1−γ

ω̄σ̄2
s

1+β+ω̄σ̄2
s
(n̂∗s − b∗s)2

,

which allows to evaluate σ2
s . We plot this solution for given values of n̄∗s and n̂∗s in Appendix Figure A2.

A4 Derivations and Proofs for Sections 4

A4.1 Taxes and international transfers (Section 4.1)

Taxes and returns There are three types of agents and their portfolio returns are given by:

1. Domestic households save in home-currency bonds Bt and earn a return Rt/(1 + τht ). Their
Euler equation is given by:

Rt

1 + τht
Et
{

Θt+1
Et
Et+1

}
= 1, Θt+1 = β

CTt
CTt+1

.

2. Domestic �nancial agents — noise traders and intermediaries, respectively — invest (1+τ∗Ht)N
∗
Ht/R

∗
t

and (1+τ∗Ht)D
∗
Ht/R

∗
t dollars in a carry trade position with a return R̃∗Ht+1 =

R∗t
1+τ∗Ht

− Rt
1+τHt

Et
Et+1

.
While N∗Ht is exogenous, intermediaries’ portfolio choice solves an optimization problem that
gives rise to (4), and thus in the presence of taxes satis�es:

D∗Ht
R∗t

=
EtΘt+1R̃

∗
Ht+1

(1 + τ∗Ht)ωHσ
2
Ht

, σ2
Ht =

(
Rt

1 + τHt

)2

vart

(
Et
Et+1

)
=

σ2
t

(1 + τHt)2
.

Note that (1 + τHt)DHt/Rt = −(1 + τ∗Ht)EtD∗Ht/R∗t is the home-currency position of their
zero-capital portfolio, where D∗Ht and DHt are units of the zero-coupon bonds purchased in
each currency, and similarly for the noise traders.

3. Foreign �nancial agents invest N∗Ft/R
∗
t and D∗Ft/R

∗
t , respectively, in a carry trade with a return

R̃∗Ft+1 = R∗t − Rt
1+τFt

Et
Et+1

. While N∗Ft is exogenous, intermediaries’ portfolio choice satis�es:

D∗Ft
R∗t

=
EtΘt+1R̃

∗
Ft+1

ωFσ2
Ft

, σ2
Ft =

(
Rt

1 + τFt

)2

vart

(
Et
Et+1

)
=

σ2
t

(1 + τFt)2
.

Their home-currency position is given by (1+τFt)DFt/Rt = −EtD∗Ft/R∗t , and similarly for the
noise traders.

We further assume that ω is a common risk aversion parameter and mH and mF are masses of
home and foreign arbitrageurs such that mH + mF = 1. Therefore, ωH = ω/mH and ωF = ω/mF
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represent the inverse aggregate risk absorption capacities by home and foreign intermediaries, repstec-
tively, where 1

mH

D∗Ht
R∗t

and 1
mF

D∗Ft
R∗t

correspond to individual positions. Combining the household Euler
equation with the two portfolio choice conditions:

βR∗t
1 + τ∗Ht

Et
CTt
CTt+1

=
1 + τht
1 + τHt

+
ωσ2

t

mH

1 + τ∗Ht
(1 + τHt)2

D∗Ht
R∗t

,

βR∗tEt
CTt
CTt+1

=
1 + τht
1 + τFt

+
ωσ2

t

mF

1

(1 + τFt)2

D∗Ft
R∗t

.

Express out ωσ2
t
D∗Ht
R∗t

and ωσ2
t
D∗Ft
R∗t

and add the two resulting equations to solve out D∗Ht + D∗Ft using
market clearing D∗Ft +D∗Ht = B∗t − F ∗t −N∗Ft −N∗Ht to obtain:

βR∗tEt
CTt
CTt+1

= (1+τht )
mH

1+τHt
1+τ∗Ht

+mF (1 + τFt)

mH

(
1+τHt
1+τ∗Ht

)2
+mF (1 + τFt)2

+
ωσ2

t

mH

(
1+τHt
1+τ∗Ht

)2
+mF (1 + τFt)2

B∗t − F ∗t −N∗t
R∗t

.

Assuming either (i) τHt = τFt = τt and τ∗Ht = 0 or (ii) τFt = τt, τ∗Ht = −τt
1−τt and τHt = 0 results in (19)

in the text.

Taxes and the country budget constraint The net revenues of the government combine returns on
FXI and taxes imposed on arbitrageurs and noise traders:

T gt =

(
Ft−1 −

Ft
Rt

)
+ Et

(
F ∗t−1 −

F ∗t
R∗t

)
+ τht

Bt
Rt

+ τHt
DHt +NHt

Rt
+ τFt

DFt +NFt

Rt
+ τ∗HtEt

D∗Ht +N∗Ht
R∗t

=

[
R∗t−1 −Rt−1

Et−1

Et

]
Et
F ∗t−1

R∗t−1

+ τht
Bt
Rt

+
τ∗Ht − τHt
1 + τHt

Et
D∗Ht +N∗Ht

R∗t
− τFt

1 + τFt
Et
D∗Ft +N∗Ft

R∗t
,

where we used the zero net position of arbitrageurs, noise traders and the central bank. The budget
constraint of the households after netting out the expenditure on non-tradables is given by:

(1 + τht )
Bt
Rt
−Bt−1 = Et(YTt − CTt) + T gt + T ft ,

where the pro�ts of the local �nancial sector are given by

T ft = (DHt−1+NHt−1)+Et(D∗Ht−1+N∗Ht−1) =

[
R∗t−1 −

1 + τ∗Ht−1

1 + τHt−1

Et−1

Et
Rt−1

]
Et
D∗Ht−1 +N∗Ht−1

R∗t−1

.

Combining these three equations together, we obtain the country budget constraint:

Bt
Rt

=Bt−1 + Et(YTt − CTt) +

[
R∗t−1 −

1 + τ∗Ht−1

1 + τHt−1

Et−1

Et
Rt−1

]
Et
D∗Ht−1 +N∗Ht−1

R∗t−1

+

[
R∗t−1 −Rt−1

Et−1

Et

]
Et
F ∗t−1

R∗t−1

+
τ∗Ht − τHt
1 + τHt

Et
D∗Ht +N∗Ht

R∗t
− τFt

1 + τFt
Et
D∗Ft +N∗Ft

R∗t
,

The market clearing condition for home bonds, Bt +DHt +DFt +NHt +NFt + Ft = 0, can be
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rewritten using the zero net positions of all �nancial traders as:

Bt
Rt

=
1 + τ∗Ht
1 + τHt

Et
D∗Ht +N∗Ht

R∗t
+

1

1 + τFt
Et
D∗Ft +N∗Ft

R∗t
+ Et

F ∗t
R∗t

.

Using this expression, substitute Bt and Bt−1 out of the country’s budget constraint and simplify:

B∗t
R∗t
−B∗t−1 = YTt − CTt −

[
R∗t−1 −

Rt−1

1 + τFt−1

Et−1

Et

]
D∗Ft−1 +N∗Ft−1

R∗t−1

,

where we used the de�nition of the NFA position of the country,B∗t−1 = F ∗t +D∗Ft+D
∗
Ht+N

∗
Ft+N

∗
Ht.

The last term in this budget constraint corresponds to the international transfer of income and can be
rewritten using the de�nition of R̃∗Ft+1 and the optimal portfolio choice of foreign arbitrageurs:

B∗t
R∗t
−B∗t−1 = YTt − CTt − R̃∗Ft

(
mFEt−1[ΘtR̃

∗
Ft]

ωσ2
t−1/(1 + τFt−1)2

+
N∗Ft−1

R∗t−1

)
.

For the rest of the analysis, we assume that τFt =
−τ∗Ht
1+τ∗Ht

= τt and τht = τHt = 0 so that the
carry-trade returns are given by R̃∗t+1 = R̃∗Ft+1 = R∗t − Rt

1+τt
Et
Et+1

.

Lemma A5 The second order Taylor expansion around a zero-NFA steady state of the welfare loss for any
budget- and resource-feasible allocation relative to the allocation {C̃Nt, C̃Tt} with R̃∗t = 0 is given by:

1

2
E0

∞∑
t=0

βt
[
γz2

t + (1− γ)x2
t + 2βγ

(
mF

ω̄σ̄2
t

ψt − n∗Ft
)
ψt

]
,

whereψt = it−i∗t−Et∆et+1−τt. Therefore, it is su�cient to know the �rst-order dynamics {xt, zt, ψt, ω̄σ̄2
t }

to evaluate the second-order welfare loss.

Proof: We use the same notation as in the proof of Lemma A1. The second-order approximation for
the non-tradable sector is the same as before and, therefore, we focus exclusively on the tradable sector.
Rewrite the country’s budget constraint in terms of deviations as

βe−r
∗
t b̌∗t − b̌∗t−1 = eyTt − ecTt − R̃∗t

(
mFβEt−1[e−∆cTtR̃∗t ]

ȲTωσ2
t−1/(1 + τt−1)2

+ βe−r
∗
t−1n∗Ft−1

)
,

where we used b̌∗t = B∗t /ȲT , n∗t = N∗t /ȲT , C̄T = ȲT , Θ̄ = β, R̄∗ = 1/β, ¯̃R∗ = 0, N̄∗ = 0, τ̄ = 0. The
second-order Taylor expansion to the �ow budget constraint is:

0 = b̌∗t−1 + yTt +
1

2
y2
Tt − cTt −

1

2
c2
Tt − βb̌∗t + βr∗t b̌

∗
t − r̃∗t

mFEt−1r̃
∗
t

ω̄σ̄2
t−1

− r̃∗t n∗Ft−1 + h.o.t.,

where we denoted r̃∗t ≡ βR̃∗t and used the result from Lemma A3 that ωσ2
t = 1

βȲT
ω̄σ̄2

t +O(ν).55

55The fact that Lemma A3 still applies in this extended environment follows from the same �rst-order Taylor expansion of
the equilibrium system for the goods market clearing (2), the risk-sharing condition (19), and the country budget constraint
which is still βb̌∗t = b̌∗t−1 +yTt− cTt+O(ν) up to �rst order. That is, international income transfers are of the second order
and only a�ect the second-order approximation to the welfare, but not the �rst-order equilibrium dynamic system.

61



Integrate the �ow budget constraint across periods and impose the transversality condition to get

E0

∞∑
t=0

βtcTt = b̌∗−1 + E0

∞∑
t=0

βt
[
yTt +

1

2
y2
Tt −

1

2
c2
Tt + βr∗t b̌

∗
t − r̃∗t

mFEt−1r̃
∗
t

ω̄σ̄2
t−1

− r̃∗t n∗Ft−1

]
+ h.o.t.

Recall that the optimal allocation {c̃Tt, b̃∗t , ω̄σ̃2
t } with r̃∗t = 0 also satis�es the intertemporal budget

constraint:

E0

∞∑
t=0

βtc̃Tt = b̃∗−1 + E0

∞∑
t=0

βt
[
yTt +

1

2
y2
Tt −

1

2
c̃2
Tt + βr∗t b̃

∗
t

]
+ h.o.t.

Take the di�erence between the two equations to obtain

E0

∞∑
t=0

βtcTt − E0

∞∑
t=0

βtc̃Tt = −1

2
E0

∞∑
t=0

βt
[
z2
t + 2r̃∗t

(
mFEt−1r̃

∗
t

ω̄σ̄2
t−1

+ n∗Ft−1

)]
+ h.o.t.,

where we de�ne b∗t ≡ b̌∗t − b̃∗t and we use the result from the proof of Lemma A1 that

E0

∑∞

t=0
βt
[
(cTt − c̃Tt)c̃Tt − βr∗t b∗t

]
= 0 + h.o.t.,

which we use to obtain 1
2z

2
t = 1

2(cTt − c̃Tt)2 from 1
2c

2
Tt −

1
2 c̃

2
Tt = 1

2z
2
t + (cTt − c̃Tt)c̃Tt.

Following the same remaining steps as in the proof of Lemma A1, the second-order approximation
to the welfare loss relative to the �rst-best allocation is:

W̃0 −W0 =
1

2
E0

∞∑
t=0

βt
[
γz2

t + (1− γ)x2
t + 2γ(Et−1r̃

∗
t )

(
mFEt−1r̃

∗
t

βω̄σ̄2
t−1

+ n∗Ft−1

)]
+ h.o.t.

where we rewrote E0r̃
∗
t = E0Et−1r̃

∗
t by the law of iterated expectation. Finally, note that:

Et−1r̃
∗
t = Et−1

[
βR∗t−1 −

βRt−1

1 + τt−1

Et−1

Et

]
= i∗t−1 − it−1 + Et−1∆et + τt−1 + h.o.t. = −ψt−1 + h.o.t.

and rewrite the loss function as (since by construction ψ−1 = 0):

W̃0 −W0 =
1

2
E0

∞∑
t=0

βt
[
γz2

t + (1− γ)x2
t + 2βγ

(
mF

ω̄σ̄2
t

ψt − n∗Ft
)
ψt

]
+ h.o.t. �

Proof of Proposition 6 The proof of Lemma A5 shows that international transfers are of second order
and therefore, to the �rst-order approximation, the country budget constraint remains the same as in
the baseline model. The goods market clearing condition is exactly the same as before and the risk-
sharing condition (19) now includes capital controls τt, and its �rst-order Taylor expansion in terms of
deviations from the �rst best {C̃Tt, B̃∗t }, around a steady state with τ̄ = 0, is:

Et∆zt+1 = τt + ω̄σ̄2
t (n
∗
t + f∗t − b∗t ),
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following the same steps as in the proof of Lemma A3. Using the de�nition of the expected carry trade
return, ψt ≡ it − i∗t − Et∆et+1 − τt, and the household Euler equation:

it − i∗t − Et∆et+1 = Et∆zt+1 = ψt + τt,

which corresponds to equation (20) in the text and implies ψt = ω̄σ̄2
t (n
∗
t + f∗t − b∗t ).56

The planner’s problem combines the second-order loss function and the �rst-order constraints:

min
{xt,f∗t ,zt,et,b∗t ,σ̄2

t ,ψt,τt}

1

2
E0

∞∑
t=0

βt
[
γz2

t + (1− γ)x2
t + 2βγ

(
mF

ω̄σ̄2
t

ψt − n∗Ft
)
ψt

]
subject to βb∗t = b∗t−1 − zt,

et = q̃t + xt − zt,

Et∆zt+1 = τt + ψt,

ψt = ω̄σ̄2
t (n
∗
t + f∗t − b∗t ) with σ̄2

t = vart(et+1),

where n∗t = n∗Ht + n∗Ft.
Part (a): From the planner’s problem, note that the undistorted allocation without international

transfers (as in Proposition 1):

xt = zt = b∗t = ψt = 0 and et = q̃t

is still feasible, and must be implemented with FXI f∗t = −n∗t and without the use of capital controls
τt = 0. Furthermore, this is the best allocation if n∗Ft = 0 independently of the value of mF ∈ [0, 1],
that is when noise traders are entirely domestic, as in this case the international transfer is always away
from the country in expectation and is proportional to ψ2

t .
Part (b): When n∗Ft 6= 0, the planner can improve over this outcome. For example, the planner

can still achieve the undistorted macroeconomic allocation, xt = zt = b∗t = 0, yet generate a positive
expected transfer from the rest of the world,

(
mF
ω̄σ̄2

t
ψt − n∗Ft

)
ψt < 0. When xt = zt = 0, then et = q̃t

and hence σ̄2
t = vart(q̃t+1) is given exogenously. In this case, the maximum transfer from abroad

equals ω̄σ̄2
t

4mF
(n∗Ft)

2 > 0, and it is achieved when the carry trade return equals ψt =
ω̄σ̄2

t
2mF

n∗Ft. The
implementation of this outcome requires both the use of FXI and capital controls. In particular, τt =

−ψt is required to ensure no risk-sharing distortion, zt = 0, and FXI underreact to n∗Ft 6= 0 shocks to
ensure ψt 6= 0. Speci�cally, the optimal FXI are f∗t = −n∗Ht−

(
1− 1

2mF

)
n∗Ft. When all intermediaries

are foreign, mF = 1, this simpli�es to f∗t = −n∗Ht −
1
2n
∗
Ft.

Part (c): If the planner is willing to compromise xt = zt = 0, i.e. allow for macroeconomic distor-
tions, she can improve the allocation even further by inducing larger transfers from abroad at the cost

56In the absence of household savings taxes, τht = 0, the household Euler equation for domestic bond can be written as
βRtEt

{
CTt
CTt+1

Et
Et+1

}
= 1, and the �rst best risk-sharing satis�es βR∗tEt CTt

CTt+1
= 1, which together imply Et∆zt+1 =

it− i∗t −Et∆et+1, which is the UIP deviation from the perspective of the household. In contrast, ψt is the carry trade return
from the perspective of the �nancial sector, whether home or foreign (provided that 1 + τFt = 1/(1 + τ∗Ht) and τHt = 0).
Under these circumstances, ψt/(ω̄σ̄2

t ) is the currency position taken by every intermediary (home or foreign), and there is a
unit continuum of them (mH +mF = 1). Therefore, ψt/(ω̄σ̄2

t ) = n∗t + f∗t − b∗t ensures currency market clearing.
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of some production and risk-sharing distortions. For simplicity, we consider here the case when the
�nancial sector is entirely foreign, that is mF = 1 and n∗t = n∗Ft. Note that the risk-sharing condition
is a side equation that pins down τt and the equation for ψt determines f∗t , so that these two constraints
can be eliminated from the planner’s problem. Furthermore, ψt only appears in the objective function,
and the �rst-order optimality for ψt requires ψt = 1

2 ω̄σ̄
2
t n
∗
Ft.

Substituting the optimal ψt back into the loss function, we can rewrite the planner’s problem as:

min
{xt,zt,b∗t }

1

2
E0

∞∑
t=0

βt
[
γz2

t + (1− γ)x2
t +

βγ

2
(n∗Ft)

2ω̄σ̄2
t

]

subject to βb∗t = b∗t−1 − zt and with σ̄2
t ≡ Et(q̃t+1 + xt+1 − zt+1

)2 − [Et(q̃t+1 + xt+1 − zt+1)
]2.

Let λt denote the Lagrange multiplier on the budget constraint and take the �rst order conditions with
respect to b∗t , zt and xt:

λt = Etλt+1,

λt = 2γzt + γ(n∗Ft−1)2ω̄
[
q̃t + xt − zt − Et−1

(
q̃t + xt − zt

)]
,

0 = 2(1− γ)xt − γ(n∗Ft−1)2ω̄
[
q̃t + xt − zt − Et−1

(
q̃t + xt − zt

)]
.

The latter condition can be rewritten as

xt =
γω̄

2(1− γ)
(n∗Ft−1)2(et − Et−1et).

This implies that the planner does not distort the average output gap, Et−1xt = 0, but in states of
the world with relatively depreciated exchange rate et > Et−1et, the monetary policy overstimulates
the economy xt > 0, which further weakens the currency and increases the volatility of the exchange
rate σ̄2

t .
Further, note that

Etλt+1 = 2γEtzt+1 + γω̄(n∗Ft)
2Et(et+1 − Etet+1) = 2γEtzt+1,

and, therefore, the �rst two optimality conditions imply

Et∆zt+1 =
ω̄

2
(n∗Ft−1)2(et − Et−1et).

It follows that the planner distorts international risk sharing: in states of the world with a relatively
depreciated exchange rate, et > Et−1et, it is optimal to introduce a UIP wedge, Et∆zt+1 > 0, so that zt
falls and the exchange rate depreciates even further leading to a higher volatility σ̄2

t . Recall that given
the path of ψt implemented with FXI, the desired deviations from risk sharing, Et∆zt+1 = τt+ψt 6= 0,
are ensured using capital controls τt.

These policy interventions lower the elasticity of currency supply by foreign intermediaries that
are faced with a greater equilibrium exchange rate volatility σ̄2

t . This allows the planner to extract
greater rents from foreign noise-trade currency demand n∗Ft. �
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A4.2 Multi-country model (Section 4.2)

Consider a world of a unit continuum of small open economies i ∈ [0, 1], each as described in Sec-
tion 2.1. Given exogenous shocks as well as monetary and FX policies in each economy, the global
equilibrium is determined by household optimality conditions (2) and (3):

γ

1− γ
CNit
CT it

=
EitP ∗Tt
PNit

and βRitEit
CNit
CNit+1

= 1,

the international risk-sharing conditions (7):

βR∗tEt
{

CT it
CT it+1

P ∗Tt
P ∗Tt+1

}
= 1 + ωiσ

2
it

B∗it −N∗it − F ∗it
R∗t

with σ2
it = R2

it · vart

( Eit
Eit+1

)
,

and the countries’ budget constraints (6):

B∗it
R∗t
−B∗it−1 = P ∗Tt(YT it − CT it)

for all i and t, as well as the new conditions for the global market clearing for tradables and bonds for
every t: ∫ 1

0
CT itdi =

∫ 1

0
YT itdi ≡ YTt and

∫ 1

0
B∗itdi = 0.

Currencies i ∈ [0,m0] peg to the dollar so that Eit = 1.
The problem of a global planner that takes as given the structure of international asset markets is:57

max
{{CNit,CTit,B∗it},R∗t ,P ∗Tt+1}

E0

∞∑
t=0

βt
∫ 1

0

[
γ logCT it + (1− γ)

(
logCNit −

CNit
Ait

)]
di

subject to
B∗it
R∗t
−B∗it−1 = P ∗Tt(YT it − CT it),∫ 1

0
B∗itdi = 0.

We denote the globally e�cient allocation with hat’s and contrast it with the non-cooperative e�cient
allocation denoted with tilde’s.

Lemma A6 Up to the �rst order approximation, the local �rst-best allocation {c̃Nit, c̃T it, b̃it} from Sec-
tion 2.2 coincides with the global e�cient allocation {ĉNit, ĉT it, b̂it}.

Proof: Taking the optimality conditions in the planner’s problem, we get that the optimal output in
the non-tradable sector is the same with and without cooperation, ĈNit = C̃Nit = Ait. The optimality

57Note that the global planner is allowed to manipulate equilibrium pricesR∗t and P ∗Tt, but is not allowed to change budget
sets of countries beyond the pecuniary e�ect of market prices that are common for all countries (see Dávila, Hong, Krusell,
and Ríos-Rull 2012, Itskhoki and Moll 2019).
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conditions with respect to CT it, B∗it, P ∗Tt and R∗t are given by

λit =
1

P̂ ∗TtĈT it
,

λit = βR̂∗tEtλit+1 + R̂∗tµt,

0 =

∫ 1

0
λit(YT it − ĈT it)di,

0 =

∫ 1

0
λitB̂

∗
itdi.

Assuming that countries have zero initial positions B∗i,−1 = 0, the countries’ budget constraints and
the market clearing for bonds imply that the latter two optimality conditions are isomorphic and one of
them can be dropped as redundant. Consider a steady state with B̄∗i = 0 as a point of approximation.
We allow for an arbitrary small cross-country variation in ȲT i, but then take the limit ȲT i → ȲT .
The last optimality condition is then automatically satis�ed. It follows from the budget constraint that
C̄T i = ȲT i and hence, the former two optimality conditions require that 1−βR̄∗ = µ̄R̄∗P̄ ∗T ȲT i. Given
that the right-hand side of the equation varies with i, the unique solution is µ̄ = 0 and βR̄∗ = 1.

Taking the �rst-order approximation around this steady state, we get a linearized Euler equation

Et∆ĉit = r̂∗t +
P̄T ȲT
β

µt, (A9)

where with a slight abuse of the notation, µt is the �rst-order deviation from zero. Also note that from
here on we drop the tradable index T on all log deviations, cit := cT it and yit := yT it. Since the right-
hand side of (A9) does not vary with i, we can integrate it across all i and impose the market clearing
condition,

∫ 1
0 ĉitdi = yTt, resulting in the optimal cooperative risk-sharing condition for all i:

Et∆ĉit = Et∆yTt+1.

These equations together with the linearized budget constraint for all i:

βb̂∗it = b̂∗it + yit − ĉit,

where b̂∗it ≡ B∗it/ȲT , and the transversality condition, uniquely pin down the globally e�cient alloca-
tion of tradables {ĉit, b̂it}.

These conditions coincide with the equilibrium system describing the non-cooperative �rst best
in Section A2.2 where the global real interest rate is equal r∗t = Etc̃it+1 = Et∆yTt+1. Thus, under
this condition, consumption of tradables is the same in the optimal cooperative and non-cooperative
allocations, ĉit = c̃it, and this allocation is implemented with a global real interest rate r̂∗t = Et∆yTt+1

and µt = 0. In other words, no tax wedges are needed to implement the global planner’s allocation, at
least to a �rst order. Intuitively, when the point of approximation is B̄i = 0, there are no �rst-order
valuation e�ects in the budget constraint and, hence, no pecuniary redistribution across economies.
The optimal intertemporal consumption smoothing chosen by the global planner is the same as in the
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non-cooperative equilibrium. �

Implementation Under sticky prices,PNit = 1, implementing the global planner’s allocation requires
the following path of nominal interest rates, prices and exchange rates: (i) for the US, R0t = R∗t and
PT0t = P ∗Tt, where:

βR∗tEt
A0t

A0t+1
= 1, P ∗Tt =

γ

1− γ
A0t

ĈT0t

,

and (ii) for all other countries i ∈ (0, 1]:

βRitEt
Ait
Ait+1

= 1, Eit =
γ

1− γ
Ait

P ∗TtĈT it
.

The ex post and ex ante real interest rates are, respectively, given by R∗t
P ∗Tt
P ∗Tt+1

and R∗tEt
P ∗Tt
P ∗Tt+1

, and we
write the latter in log deviations as r∗t = i∗t − Etπ∗Tt+1, where i∗t ≡ log(R∗t /R̄

∗) = −Et∆a0t+1.
When �nancial intermediation is also frictional, additionally accommodating currency demand

shocks country-by-country, F ∗it = B∗it −N∗it, still allows to implement the �rst-best allocation.

Proof of Lemma 1 De�ne the global risk-sharing wedge ẑit ≡ cit − ĉit, where cit is an arbitrary path
of tradable consumption that satis�es the feasibility constraints and ĉit is the globally e�cient level.
As before, we focus on a steady state with B̄i = 0 and C̄T i = ȲT i = ȲT . The �rst-order approximation
to the market clearing condition implies that∫ 1

0
citdi = yTt =

∫ 1

0
ĉitdi,

and, therefore,
∫ 1

0 ẑitdi = 0. Following the results from Section A2.2, we linearize the risk-sharing
condition to get:

Et∆cit+1 = r∗t + ψit, where ψit ≡ ω̄iσ̄2
it(n

∗
it + f∗it − b∗it), σ̄2

it ≡ vart(eit+1).

The proof of Lemma A6 above shows that the e�cient allocation satis�es Et∆ĉit+1 = Et∆yTt+1 ≡ r̂∗t .
Subtracting this expression from the previous one allows rewriting the risk-sharing condition in terms
of the deviations ẑit:

Et∆ẑit+1 = r∗t − r̂∗t + ψit.

Integrating across i and using the market clearing condition, we get that

r∗t − r̂∗t = −ψ̄t and Et∆ẑit+1 = ψit − ψ̄t, where ψ̄t ≡
∫ 1

0
ψitdi.

Finally, the second-order approximation to the objective function can be derived using Lemma A2.
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To this end, de�ne:

L = E0

∞∑
t=0

βt
∫ 1

0

{
γ logCT it + (1− γ)

(
logCNit −

CNit
Ait

)
+ λit

(
P ∗Tt(YT it − CT it) +B∗it−1 −

B∗it
R∗t

)
+ µtB

∗
it

}
di,

and take the second-order approximation around the global �rst-best allocation

L − L̂ = −1

2
E0

∞∑
t=0

βt
∫ 1

0

{
γ

(
CT it − ĈT it

C̄T

)2

+ (1− γ)

(
CNit − ĈNit

C̄N

)2

+ 2
P ∗Tt − P̂ ∗Tt

P̄ ∗T

CT it − ĈT it
C̄T

− 2
(B∗it − B̂∗it)(R∗t − R̂∗t )

R̄∗2P̄ ∗T C̄T

}
di+ h.o.t.

= −1

2
E0

∞∑
t=0

βt
∫ 1

0

{
γẑ2

it + (1− γ)x2
it

}
di+ h.o.t.,

where we used the fact that
∫ 1

0 (CT it − ĈT it)di =
∫ 1

0 (B∗it − B̂∗it)di = 0. �

Proof of Proposition 7 Part (a) can be veri�ed directly, as ψit = ω̄iσ̄
2
it(n

∗
it + f∗it − b∗it) = 0 for every

i ∈ (0, 1] ensures ψ̄t = 0, and hence r∗t = r̂∗t and a globally optimal tradable consumption allocation
with Et∆cit+1 = Et∆ĉit+1 = r̂∗t for all i and t.

Further, unconstrained monetary policy in the US and other countries ensures e�cient allocation
in non-tradable sectors of all countries. Speci�cally, nominal dollar rate i∗t = Et∆a0t+1 in the US
ensures x0t = cN0t − a0t = 0, while nominal rates in other countries i∗it = log(Rit/R̄) = Et∆ait+1

ensure xit = cNit−ait = 0 in i ∈ (0, 1], with the ensuing nominal exchange rate, eit = ait− ĉit−p∗Tt.
Finally, global market clearing implement p∗Tt = a0t− ĉ0t with associated expected in�ation Etπ∗Tt+1 =

i∗t − Et∆yTt+1, given that Et∆cit+1 = Et∆ĉit+1 = Et∆yTt+1 for all i. As a result, the realized real
interest rate r∗t = i∗t −Etπ∗Tt+1 = Et∆yTt+1 = r̂∗t , and our conjecture solution with ẑit = cit− ĉit = 0

is veri�ed.58

Part (b): Taking the path of monetary policy and output gaps {xit} as given, we focus on the opti-
mal FX policy and the resulting allocation in the tradable sector. Therefore, given the characterization

58If a subset of countries i ∈ (0,m0] have a constrained monetary policy by �xed exchange rate, eit = 0, then one
can verify that the constrained global optimal allocation is still ẑit = 0 for all i ∈ [0, 1], xit = 0 for i ∈ (m0, 1], and
xit = ĉit + p∗Tt − ait for i ∈ [0,m0], where the latter condition ensures eit = cNit − ĉit − p∗Tt = 0. If the US cooperates
with the global planner, then US monetary policy chooses the path of i∗t , and hence of p∗Tt that implements the same real rate
r∗t = r̂∗t and minimizes

∫m0

0
x2
itdi period by period. If US does not cooperate, then it chooses it and p∗Tt as above to close its

own output gap, x0t = 0, leaving the pegged countries with xit = ĉit+p∗Tt−ait = (a0t− ĉ0t)− (ait− ĉit) for i ∈ (0,m0],
and the global planner cannot improve upon this allocation.
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in Lemma 1, we can focus on the following subproblem:

min
{ẑit,b∗it,ψit,ψ̄t}

1

2
E0

∞∑
t=0

βt
∫ 1

0
ẑ2
itdi

subject to βb∗it − b∗it−1 = −ẑit (λit),

Et∆ẑit+1 = ψit − ψ̄t (µit),∫ 1

0
ẑitdi = 0 (ηt),

ψ̄t =

∫ 1

0
ψitdi (νt),

optimizing with respect to ψit for countries with unconstrained FXI f∗it and taking ψit as exogenously
given for countries with constrained FXI or �xed exchange rate (ψit = 0 for the latter as σ̄2

it = 0).
The cooperative policymaker has the following optimality conditions:

ẑit = µit − β−1µit−1 + λit + ηt,

λit = Etλit+1,

νt = µ̄t ≡
∫ 1

0
µitdi,

µit = νt = µ̄t,

where the last FOC holds only for the subset of unconstrained countries i ∈ (m0 +m1, 1], while coun-
tries i ∈ [0,m0] are pegged to the dollar (and, hence, have ψit = 0), and countries i ∈ (m0,m0 +m1]

are non-pegged and constrained with some exogenous ψit. The unconstrained countries choose ψit to
ensure µit = µ̄t, while the constrained countries face an exogenous ψit and a corresponding µit.

Writing the �rst FOC in expected di�erences and using the second FOC to eliminate Et∆λit+1 = 0:

Et∆µit+1 − β−1∆µit + Et∆ηt+1 = Et∆ẑit+1 = ψit − ψ̄t,

where the last equality is the risk-sharing constraint. Integrating over i, we have:

(1 + β)µ̄t − βEtµ̄t+1 − µ̄t−1 = βEt∆ηt+1.

The initial condition is µ̄−1 = µi,−1 = 0 for all i by construction. Conjecture Et∆ηt+1 = 0, so that
E0ηt = η0 for all t, as risk-sharing conditions imply expected market clearing at all t > 0 provided
market clearing at t = 0. Under this conjecture, the solution is µ̄t = 0 for all t ≥ 0.

By consequence, µit = µ̄t = 0 for all unconstrained countries i, and hence

ψit = ψ̄t = m0 · 0 +m1ψ̄
c
t + (1−m1 −m0)ψ̄t =

m1

m0 +m1
ψ̄ct ,
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where ψ̄ct ≡ 1
m1

∫m0+m1

m0
ψitdi is the average UIP deviation for constrained countries. We have:

Et∆ẑit+1 =


− m1
m0+m1

ψ̄ct , i ∈ [0,m0],

+ m0
m0+m1

ψ̄ct , on average for i ∈ (m0,m0 +m1],

0, i ∈ (m0 +m1, 1],

and, therefore, the conjectured solution implies E0

∫ 1
0 ẑitdi = 0 for all t ≥ 0, which is necessary for

market clearing, thus verifying our conjecture that E0ηt = η0.
Note how this solution di�ers from the non-cooperative solution in which ψit = 0 for uncon-

strained countries, which results in ψ̄nt = m1ψ̄
c
t =

∫m0+m1

m0
ψitdi. For the same value of ψ̄cit > 0,

the non-cooperative solution results in a small interest rate wedge relative to the cooperative wedge,
ψ̄nt = r̂∗t −r∗t < ψ̄t, but at the same time larger capital out�ows from the constrained economies, which
go equally to all countries i ∈ [0,m0]∪ (m0 +m1, 1] that now all have ψit = 0 and Et∆ẑit+1 = −ψ̄nt .
In contrast, in cooperative solution, unconstrained countries i ∈ (m0 +m1, 1] lean against these cap-
ital in�ows, resulting in Et∆ẑit+1 = 0. This curbs total capital out�ows from constrained economies
i ∈ (m0,m0 +m1], but at the cost of a larger interest rate wedge ψ̄t > ψ̄nt > 0 and large capital in�ows
to the US and pegged countries, Et∆ẑit+1 = −ψ̄t < −ψ̄nt < 0 for i ∈ [0,m0]. �

A5 Derivations and Proofs for Sections 5

A5.1 Staggered prices (Section 5.1)

The derivation of the NKPC and the loss function in the presence of in�ation follows the standard steps.
Using the property of the model that monetary policy a�ects exchange rates only via σ̄2

t , the planner’s
problem can be partitioned in two steps. The �rst one solves for the optimal trade-o� between output
gap and in�ation. Because of the certainty equivalence and only �rst-period innovations a�ecting σ̄2

t ,
it is su�cient to focus on the following problem:

min
{xt,πNt}

1

2

∞∑
t=0

βt(x2
t + απ2

Nt)

s.t. πNt = κxt + βπNt+1 + νt,

x0 + πN0 = mt.

Taking the �rst-order conditions, we get

βtxt = κλt + µt,

βtαπNt = −λt + λt−1β + µt,

where µt = 0 for t > 0 and λ−1 = 0. It follows that the optimality conditions are

ακπNt = −xt + xt−1

70



for t ≥ 1 and
ακπNt = −xt + (1 + κ)µt,

for t = 0. Substitute the optimality condition into the NKPC, so that dynamics for t > 0 is given by

βxt+1 −
(
1 + β + ακ2

)
xt + xt−1 = ακνt.

This di�erence equation has two roots λ1 > 1 and λ2 < 1

λ1,2 =
1

2β

[
1 + β + ακ2 ±

√
(1 + β + ακ2)2 − 4β

]
,

and assuming for simplicity that νt follows an AR(1) process, we get

xt = λ2xt−1 −
ακ

β

1

λ1 − ρ
νt.

This means that one initial condition x0 is required. At the same time, the NKPC for the �rst period
together with the initial condition imply that

ακ(mt − x0) = ακ2x0 − β∆x1 + ακεν0.

Substitute in expression for x1 and solve for

x0 =
ακ

ακ2 + ακ+ β − βλ2

[
mt −

λ1

λ1 − ρ
εν0

]
.

Substituting this result into equation for xt, we get

xt = kxxtmt − kxνtεν0,

πNt = kπxtmt − kπνtεν0

for some coe�cients k. Substitute this back into the objective function:

∞∑
t=0

βt(x2
t + απ2

Nt) =
∞∑
t=0

βt
[
(kxxtmt − kxνtεν0)2 + α(kπxtmt − kπνtεν0)2

]
= Kxm2

t +Kνε2
ν0 +Kxνmtεν0 = k1(mt − k2εν0)2 + k3ε

2
ν0.

Substitute solution from the �rst step keeping in mind that it holds for every innovation εν0 to get the
second-stage problem, which is largely isomorphic to the baseline model:

min
{zt,mt,b∗t ,f∗t ,σ̄2

t }

1

2
E0

∞∑
t=0

βt
[
γz2

t + (1− γ)k1(mt − k2ενt)
2
]

s.t. Et∆zt+1 = ω̄σ̄2
t

(
n∗t + f∗t − b∗t

)
,

βb∗t = b∗t−1 − zt,

σ̄2
t = vart (q̃t+1 − zt+1 +mt+1) .

71



Going back to the policy in the non-tradable sector, consider whether the price level converges to
the initial level in the long run. The optimal policy implements ακπNt = −∆xt for t ≥ 1, just as
in a closed economy. However, in the latter case, this condition holds also for t = 0 (under timeless
perspective), which implies that ακpNt = −xt in all periods and given that xt is stationary, the price
level converges in the long run to the initial level. In contrast, in our modelακpNt = −xt+(x0+ακπ0)

and given that xt → 0 in the long run, we get pNt → 1
ακx0 + π0, which is generically not equal zero.

A5.2 Terms of trade and incomplete pass-through (Section 5.2)

Loss function To derive the loss function, follow the same steps as in the baseline model. Write down
the Lagrangian of the relaxed problem without nominal or �nancial frictions:

L = E0

∞∑
t=0

βt

{
(1− γ) logCHt + γ logCFt − Lt

+ λt

(
AtLt − CHt − γP ∗−εHt C

∗
t

)
+ µt

[
B∗t−1 + γP ∗1−εHt C∗t − CFt −

B∗t
R∗t

]}
.

Notice that the planner is allowed to set optimal price in foreign market and, in equilibrium, charges a
constant markup ε

ε−1 over domestic price for the same goods. Take the �rst-order conditions and solve

for the steady-state values of the Lagrange multipliers: λ̄ = 1/A, µ̄ =
(

ε
ε−1

C̄∗

Ā

) ε−1
ε 1

C̄∗
. Using these

values and Lemma A2, derive quadratic loss function:

L−L̃ = −1

2
E0

∞∑
t=0

βt
{

(1−γ)(cHt− c̃Ht)2 +γ(cFt− c̃Ft)2 +γ(ε−1)(p∗Ht− p̃∗Ht)2
}

+h.o.t., (A10)

where as before, the small letters denote the deviations from the �rst-best allocation.

DCP The dollar pricing implies that P ∗Ht is �xed and therefore,

p∗Ht = −p̃∗Ht = c̃Ht − c̃Ft = q̃t,

where q̃t is the natural real exchange rate. As before, de�ne output gap as deviations from the optimal
production of locally consumed goods xt ≡ cHt − c̃Ht and the risk-sharing wedge as the deviation
from the optimal consumption of foreign goods zt ≡ cFt − c̃Ft and write the loss function (A10) as
1
2E
∑∞

t=0 β
t
[
(1− γ)x2

t + γz2
t + γ(ε− 1)q̃2

t

]
. The �rst-order approximation to the budget constraint is

βb∗t = b∗t−1 − (ε− 1)q̃t − zt,

where b∗t ≡
B∗t−B̃∗t
C̄F

. Intuitively, when the natural real exchange rate depreciates, the export price
become too high reducing exports relative to the e�cient allocation. Normalizing N∗t and F ∗t by C̄F
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and de�ning ω̄ ≡ ωC̄F /β, the planner’s problem can be written as

min
{xt,zt,b∗t ,f∗t ,σ̄2

t }

1

2
E0

∞∑
t=0

βt
[
γz2

t + (1− γ)x2
t + γ(ε− 1)q̃2

t

]
s.t. Et∆zt+1 = ω̄σ̄2

t (n
∗
t + f∗t − b∗t ),

βb∗t = b∗t−1 − (ε− 1)q̃t − zt,

σ̄2
t = vart

(
q̃t+1 + xt+1 − zt+1

)
.

It follows that when q̃t = 0, the �rst-best allocation with zero losses and xt = zt = 0 is implementable
with monetary policy that pegs the nominal exchange rate σ̄2

t = 0. When two policy instruments
are available, the risk-sharing condition is not binding and the problem reduces to minimizing the
losses subject to the budget constraint. Let βtλt denote the Lagrange multiplier and take the optimality
conditions with respect to zt and b∗t : γzt = λt, λt = Etλt+1. Thus, the monetary policy closes the
output gap xt = 0 and the FX interventions close the UIP gap Et∆zt+1 = 0 by setting f∗t = b∗t − n∗t .
Notice that b∗t 6= 0 in this case because q̃t creates deviations from the optimal net exports. The fact
that exogenous shocks (ε− 1)q̃t in the budget constraint do not change any optimality conditions also
implies that Theorems 1 and 2 remain true and the second-best monetary policy partially stabilizes the
exchange rate.

PCP When sticky in producer currency, the export price in the currency of destination is equal

P ∗Ht =
ε

ε− 1

PHt
Et

=
ε

ε− 1

1− γ
γ

CFt
CHt

,

where the latter equality follows from household demand for goods. Therefore,

p∗Ht = cFt − cHt

and it is su�cient to close two gaps in the loss function (A10) to implement the e�cient allocation.
Linearizing the market clearing condition, we get

at + lt = (1− γ̄)cHt + γ̄(c∗t − εp∗Ht),

where γ̄ ≡ γ(ε−1)
ε−γ is the steady-state share of exports in total output. Notice that γ̄ → 0 when ε → 1

as the export tax converges to in�nity in this limit. The last two equations can be solved to express cHt
and p∗Ht in terms of the normalized output gap xt ≡ lt−l̃t

1+γ̄(ε−1) and the risk-sharing gap zt ≡ cFt−c̃Ft
1+γ̄(ε−1) :

cHt − c̃Ht = εγ̄zt + xt, p∗Ht − p̃∗Ht = (1− γ̄)zt − xt.
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Substitute these expressions into the loss function:

L − L̃ = −1

2
E0

∞∑
t=0

βt

{
(1− γ)

(
εγ̄zt + xt

)2
+ γ
(

1 + γ̄(ε− 1)
)2
z2t + γ(ε− 1)

(
(1− γ̄)zt − xt

)2}
+ h.o.t.

= −1

2
E0

∞∑
t=0

βt

{[
1− γ + γ(ε− 1)

]
x2t +

[
(1− γ)ε2γ̄2 + γ

(
1 + γ̄(ε− 1)

)2
+ γ(ε− 1)(1− γ̄)2

]
z2t

}
+ h.o.t.

= −1

2
E0

∞∑
t=0

βt
{(

1 + γ(ε− 2)
)
x2t + γε2z2t

}
+ h.o.t.

It follows that the objective function can be expressed as 1
2E0

∑∞
t=0 β

t
[
(1 − γ)x2

t + γκz2
t

]
, where

κ ≡ (1−γ)ε2

1+γ(ε−2) > 1. Intuitively, when export prices are sticky in the currency of exporter, the monetary
policy can generate expenditure switching in the market of destination and simultaneously close the
output gap in domestic and export sectors. As a result, the loss function can be written in terms of the
(total) output gap xt and the deviations of imports from the optimal level zt.

Linearizing the budget constraint and substituting in expression for p∗Ht, we get

βb∗t = b∗t−1 +
ε− 1

ε
xt − zt,

where b∗t ≡
B∗t−B̃∗t
εC̄F

. Normalizing noise trader shocks N∗t and FX interventions F ∗t by C̄F , we get the
risk-sharing condition

Et∆zt+1 = ω̄σ̄2
(
n∗t + f∗t − b∗t

)
,

where ω̄ ≡ ωC̄F
β(1+γ̄(ε−1)) . As before, the nominal exchange rate is given by

et = cHt − cFt = q̃t + xt − (1− γ̄)zt.

Combining these conditions, we get the planner’s problem:

min
{xt,zt,b∗t ,f∗t ,σ̄2

t }

1

2
E0

∞∑
t=0

βt
[
(1− γ)x2

t + γκz2
t

]
s.t. Et∆zt+1 = ω̄σ̄2

t (n
∗
t + f∗t − b∗t ),

βb∗t = b∗t−1 +
ε− 1

ε
xt − zt,

σ̄2
t = vart

(
q̃t+1 + xt+1 − (1− γ̄)zt+1

)
.

The only substantial di�erence from the baseline problem (15) is that the monetary policy a�ects ex-
ports via expenditure switching channel and therefore, xt appears in the country’s budget constraint
with a multiplier that depends on the elasticity of substitution ε. This additional channel does not
change the main results about the �rst-best policies: When two instruments are available, the planner
can implement e�cient allocation by closing the output gap xt = 0 with interest rate policy and elim-
inating the risk-sharing wedge with the FX interventions f∗t = −n∗t . Moreover, the divine coincidence
still holds when e�cient real exchange rate is constant: by stabilizing the nominal exchange rate, mon-
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etary policy alone can close both wedges xt = zt = 0. A su�cient condition for q̃t = 0 is that r∗t = 0

and at = c∗t follow a random walk. Indeed, in this case c̃Ft is also a random walk and moves one-to-one
with at, which given c̃Ht = at implies that q̃t = c̃Ht − c̃Ft = 0.

Moving to the second-best policies, the e�ect of monetary policy on country’s exports implies that
a nominal peg σ2

t = 0 is no longer su�cient to implement zt = 0. However, for any given path of xt,
it is still optimal to close the UIP deviations — either using the FX interventions or by stabilizing the
nominal exchange rate. On top of that, there is a new channel through which monetary policy can
a�ect zt ex-post: the expenditure switching boosts exports that increase the supply of foreign currency
b∗t and can be used to satisfy noise trader demand.

Incomplete pass-through Generalize the baseline model in two ways. First, assume isoelastic sepa-
rable preferences

E0

∞∑
t=0

βt
[
γC

θ−1
θ

Tt + (1− γ)(C
θ−1
θ

Nt − Lt)
]
,

where θ is the elasticity of substitution between tradable and non-tradable goods. Second, allow for
pricing-to-market in the tradable sector: while foreign suppliers still charge P ∗Tt = 1 dollars, local
retailers charge PTt = (EtP ∗Tt)αP

1−α
Nt = Eαt units of local currency. It follows the goods market

clearing condition (2) is replaced with

γ

1− γ

(
CNt
CTt

) 1
θ

=

(
EtP ∗Tt
PNt

)α
= Eαt = PTt,

while the household Euler equation (3) remains unchanged. The pro�ts and losses of the retail sector
are redistributed lump-sum to households. All arbitrageurs and noise traders are local agents and, for
tractability reasons, we assume that international bonds are denominated in units of tradable goods so
that the carry-trade returns are given by R̃t+1 = R∗t − Rt PTt

PTt+1
. Combine the arbitrageurs’ optimal

portfolio choice (4) with the household Euler equation and the bonds market clearing condition (5) to
obtain the international risk sharing

βR∗tEt
(

CTt
CTt+1

) 1
θ

= 1 + ωσ2
t

B∗t −N∗t − F ∗t
R∗t

, where σ2
t = R2

t · vart

(
PTt
PTt+1

)
.

The country’s budget constraint (6) remains unchanged.
Because the feasibility constraints in the social planner’s problem — the market clearing for non-

tradables and the country’s budget constraint — are the same as in the baseline model, the quadratic
loss function does not depend on α and changes only because of more general preferences. Applying
the result from Lemma A2, we get the second-order approximation to the objective function

L − L̂ = −1

2

θ − 1

θ2
E0

∞∑
t=0

βt

γC̄ θ−1
θ

T

(
CTt − C̃Tt

C̄T

)2

+ (1− γ)C̄
θ−1
θ

N

(
CNt − C̃Nt

CN

)2
+ h.o.t.

Normalizing the steady-state values C̄T = C̄N and taking the �rst-order approximation of the equilib-
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rium conditions, we get the following policy problem:

min
{xt,f∗t ,zt,pTt,b∗t ,σ̄2

t }

1

2
E0

∑∞

t=0
βt
[
γz2

t + (1− γ)x2
t

]
subject to βb∗t = b∗t−1 − zt,

pTt = q̃t +
1

θ
(xt − zt),

Et∆zt+1 = θω̄ · vart(pTt+1) · (n∗t + f∗t − b∗t ),

where ω̄ ≡ ωȲT /β and q̃t ≡ 1
θ (c̃Nt− c̃Tt) is the �rst-best relative price of tradables and non-tradables.

It follows that all results for the baseline model extend to this setup up to rescaling of q̃t and ω̄ by θ.
In particular, the optimal allocation does not depend on the degree of pricing-to-market α. In contrast,
the latter a�ects the equilibrium nominal exchange rate, which can be found from et = 1

αpTt. Thus,
the incomplete pass-through α < 1 and a low substitution between goods θ < 0 can reconcile low
observed volatility in output and consumption with high volatility of the exchange rate supporting this
allocation.
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