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Abstract

Financial markets play two roles with implications for the exchange rate: they accommo-

date risk sharing and act as a source of shocks. In prevailing theories, these roles are seen

as mutually exclusive and individually face challenges in explaining exchange rate dynamics.

However, we demonstrate that this is not necessarily the case. We develop an analytical

framework that characterizes the link between exchange rates and finance across all conceiv-

able market structures. Our findings indicate that full market segmentation is not necessary

for financial shocks to explain exchange rates. Moreover, financial markets can accommo-

date a significant extent of international risk sharing without leading to the classic exchange

rate puzzles. We identify plausible market structures where both roles coexist, addressing

challenges faced when examined separately.
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Introduction

A wide body of evidence indicates that exchange rate movements have minimal or no corre-

lation with macroeconomic aggregates (Meese and Rogoff, 1983; Obstfeld and Rogoff, 2001).

This finding has spurred researchers to seek the sources of these fluctuations elsewhere, shift-

ing attention to financial markets. While this approach has yielded important insights, it

also presents its own set of challenges. In this paper, we conduct a general analysis of how the

financial sector of an equilibrium model interacts with the exchange rate. This perspective

clarifies the root cause of the main challenges to existing theories and allows us to identify

frameworks that overcome these challenges.

We focus on the duality between two roles of financial markets in the determination of

the exchange rate:

– Financial markets are where sharing of macroeconomic risks across countries takes

place. Investors use financial claims to line up their marginal rates of substitution,

and this determines the exchange rate that smoothes macro shocks (e.g., Backus and

Smith, 1993, Cole and Obstfeld, 1991).

– Financial markets are also a source of shocks to the exchange rate. The exchange rate

responds to shifts in demand and supply in the currency market, whether they are

of financial or macroeconomic origin (e.g., Gabaix and Maggiori, 2015, Itskhoki and

Mukhin, 2021, Jiang, Krishnamurthy, and Lustig, 2021).

The literature usually adopts market structures — that is, a combination of assumptions

about what assets are traded and who trades them — in which only one of these roles is

emphasized. Each of these roles runs into significant challenges. On the one hand, models of

risk sharing typically assume integrated markets, complete markets, or both.1 Such market

structures lead to a tight connection of the exchange rate with the macroeconomy, at odds

with the classic evidence of the disconnect.2 On the other hand, models of financial shocks

typically focus on limited and segmented market structures. These assumptions are at odds

1Markets are complete when every state of the world can be traded or spanned; markets are integrated
when every agent can trade the available assets with everyone else.

2Overcoming this difficulty often leads to strong implications for difficult-to-measure aspects of macroe-
conomic dynamics, such as long-run risks or rare disasters.
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with the existence of widely accessible local financial markets and of many global multi-

market intermediaries.

Given the existing literature, one is led to believe that the dual roles of financial markets

are mutually exclusive. Moreover, the two challenges seem inherent to each role of the

financial market. Our main contribution is to show that, while there is a tension between

the two roles, both conjectures are incorrect. We highlight plausible market structures in

which risk sharing and shocks affecting financial markets jointly determine the exchange rate,

overcoming both challenges. In particular, extreme market segmentation is not a prerequisite

for shocks in the financial sector to have a significant impact on the exchange rate. Further,

risk sharing can be substantial without resulting in puzzles implied by the macro disconnect.

We develop joint restrictions between macroeconomic conditions in two countries, asset

returns and the exchange rate to reach these conclusions. Importantly, for any market

structure, these restrictions fully characterize the equilibrium implications of risk sharing for

the exchange rate. As is standard in models of risk sharing, the notion of macroeconomic

conditions relevant for financial markets is the intertemporal marginal rate of substitution

(IMRS) of each country’s representative household.3 These IMRSs connect local economies

to international financial markets through Euler equations. Changes in market structure

alter the set of Euler equations that hold, and hence vary equilibrium restrictions on the

exchange rate.

For example, in the familiar case of complete and integrated markets, risk sharing between

local households completely pins down the exchange rate. The log home exchange rate

depreciation ∆s must equal the difference between their log nominal IMRSs m and m∗,

reflecting the change in the marginal utility of local currency (see, e.g., Backus, Foresi, and

Telmer, 2001):

∆st+1 = m∗t+1 −mt+1. (1)

This relation illustrates the tension between the two roles of financial markets.

3We use IMRSs to consider the implications of our analysis in the context of equilibrium models, including
those with heterogenous agents. Our theoretical results do not require structural IMRSs and equally apply
to any pair of local stochastic discount factors (SDFs).
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First, this expression highlights why complete and integrated markets often struggle with

the macro disconnect: many models relate the discount factors m and m∗, and hence the

exchange rate, to macroeconomic aggregates. This results in a mismatch between several mo-

ments of the model-based and empirical exchange rates — the volatility (Brandt, Cochrane,

and Santa-Clara, 2006), cyclicality (Backus and Smith, 1993), and risk premium (Fama,

1984) puzzles, as jointly analyzed in Lustig and Verdelhan (2019). Second, the relation

in equation (1) implies that risk sharing leaves no room for the role of financial markets

as a source of shocks: even if financial frictions are modeled, they have no impact on the

depreciation rate beyond what can be learned from households’ marginal utility.

Our framework generalizes this baseline case to all possible market structures includ-

ing deviations from market completeness, market integration, or both simultaneously. We

assume that households in each country trade a potentially distinct set of assets in their

local currency. That is, Euler equations hold with respect to each country’s IMRS for these

assets.4 We summarize the remainder of what happens in international financial markets

by the assumption of no arbitrage for assets traded in these markets. This is equivalent to

assuming the existence of an international stochastic discount factor (SDF) which may or

may not coincide with one of the two local IMRSs. In the latter case, it could be the discount

factor of a global intermediary.

In this setting, we characterize all restrictions imposed on the exchange rate coming from

the households’ discount factors. These restrictions are determined by the market structure

and the statistical properties of asset returns, which we show are jointly summarized by

the notion of globally-traded risks. Globally-traded risks are shocks that both home and

foreign households can trade in their respective currency.5 Using this notion, the risk-

sharing restrictions take the form of two simple relations, which generalize equation (1).

First, innovations (denoted by ∼) to the depreciation rate coincide with innovations in the

4In circumstances when Euler equations do not hold with equality for some assets (e.g., in the presence
of constraints or convenience yields), standard risk-sharing conditions do not constrain the relation of these
asset returns with the exchange rate.

5For example, a productivity shock (or a financial shock) is globally traded if households can trade the
same asset, or different local portfolios, spanning the shock. Therefore, altering either the assets that can be
traded (i.e., the market structure) or the correlation between asset returns changes whether the productivity
shock is globally traded.
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relative discount factors across countries when projected on globally-traded risks εεεg:

proj( ∆̃st+1 |εεεgt+1) = proj( m̃∗t+1 − m̃t+1 |εεεgt+1). (2)

Second, the expected depreciation rate is similar to the one under complete markets when

asset returns span the exchange rate; otherwise, it is unconstrained by local discount factors.

These two results exhaust all possible restrictions imposed by local SDFs on the exchange

rate, i.e. they are necessary and sufficient for precluding international arbitrage opportunities.

In general, these constraints do not pin down the exchange rate completely. This leaves space

for the second role of financial markets — as a source of shocks — to determine the remainder

of the exchange rate.

We use these results to address the conjectures about the interaction between the two

roles of finance and the challenges associated with them. We fix households’ IMRSs m

and m∗, and study how variation in market structure affects the exchange rate.6 Guided

by equation (2), we classify market structures according to the size of the globally-traded

component of the exchange rate gt+1 ≡ proj( ∆̃st+1 |εεεgt+1).

First, we show that the volatility and cyclicality puzzles are present for all market struc-

tures with a large globally-traded component. That is, if applying equation (1) to our chosen

m and m∗ implies counterfactual volatility and cyclicality of the exchange rate, applying

equation (2) under a market structure with large var(gt+1) leads to the same puzzles. This

situation arises when markets are integrated or approximately complete. Our framework

clarifies the relevant notion of approximately complete: when both households can trade

assets that nearly span their IMRSs. The converse of this result is that avoiding the puzzles

requires a market structure where markets are sufficiently incomplete and not integrated

(but instead intermediated or segmented).

Second, we show that the ability of segmented-market models of financial propagation of

shocks to rationalize exchange rate dynamics comes from their lack of globally-traded shocks,

var(gt+1) = 0. Without a globally-traded component, risk sharing does not constrain the ex-

6Hence, this exercise is complementary to the large literature which fixes financial markets to be complete
and integrated, and alters IMRSs by varying assumptions about preferences (CRRA, habits, or recursive
utility) and aggregate dynamics (random walk, long-run risks, or disasters).
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change rate. Usually, these models assume extreme segmentation: households can only trade

their respective risk-free bonds, and intermediaries engage in the carry trade only. We show

that the lack of globally-traded shocks, and hence the flexibility of intermediated models,

does not hinge on such a strong form of segmentation. Intermediaries can be sophisticated

and trade an arbitrarily large set of assets. Each household can trade many local assets of

their own country only, as long as the risks in the two countries are only weakly related.

Third, we show that there exist appealing market structures in which risk sharing and

propagation of shocks coexist. This occurs in intermediated markets when the local assets of

the two countries have common shocks. When var(gt+1) is positive but not very large, risk

sharing plays a substantial role in determining the exchange rate, but there is also enough

room for the financial propagation of shocks in the currency markets to avoid the puzzles.

In such market structures, the tightness of the constraints on the exchange rate depends

on the empirical properties of returns. We show how to quantify these properties and il-

lustrate this approach for a situation in which households trade local stocks and sovereign

bonds of various maturities. We find that these asset returns do not span the exchange rate

fully, explaining at most half of its variation. Furthermore, common shocks across countries

explain no more than 25% of the variation in exchange rates. These results suggest that this

market structure leaves room for risk sharing without introducing exchange rate puzzles.

Beyond addressing these three insights on the roles of finance, our analysis provides

the full menu of constraints on the exchange rate across market structures. Our findings

highlight that many issues with existing models of the exchange rate come from taking stark

stylized views of market structure. Departing from these limiting cases and incorporating

more realistic features of how financial markets are organized is a promising avenue for

understanding the exchange rate.

Contribution to the literature While the literature has explored a number of market

structures, general results have been elusive as each case seemingly requires a separate analy-

sis. We are able to make progress by focusing on restrictions on the behavior of the exchange

rate, as opposed to fully solving the equilibrium. As such, we follow the tradition of Hansen

and Jagannathan (1991). We similarly apply these restrictions to simple moments of ex-
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change rates, such as their volatility and weak relation to business cycles. The key difference

is that the international setting leads to a preponderant role of the financial market structure

in determining these constraints.

Much of the literature explores one of the two polar cases in terms of market structure. In

particular, a large body of work maintains the complete and integrated markets assumption

of Backus, Foresi, and Telmer (2001) and varies assumptions about preferences and aggregate

dynamics to obtain a realistic exchange rate. Some prominent examples of this line of work

include Verdelhan (2010, habits), Colacito and Croce (2011, long-run risk), and Farhi and

Gabaix (2016, disasters), among many others.7 At the other end of the spectrum, Jeanne

and Rose (2002), Gabaix and Maggiori (2015), Itskhoki and Mukhin (2021, 2022, 2023),

and Kekre and Lenel (2024) take a strongly segmented view of markets with trade in short-

term bonds only. Gourinchas, Ray, and Vayanos (2022) and Greenwood, Hanson, Stein, and

Sunderam (2022) maintain segmentation but add the term structure. We map out the entire

space between these approaches. We find that some interim market structures retain the

desirable properties of these polar cases without facing their main drawbacks.

A number of papers consider the exchange rate implications of specific market structures

in this interim space. Alvarez, Atkeson, and Kehoe (2002, 2007, 2009), Kocherlakota and

Pistaferri (2007, 2008), Zhang (2021) and Marin and Singh (2023) emphasize heterogeneity

across households in access to financial markets. Corsetti, Dedola, and Leduc (2008), Engel

and Matsumoto (2009), Benigno and Thoenissen (2008) and Lewis and Liu (2022) focus on

incomplete markets. Jiang, Krishnamurthy, and Lustig (2021, 2023a), Jiang, Krishnamurthy,

Lustig, and Sun (2022), and Kekre and Lenel (2023) study the implications of convenience

yield of safe assets. These papers derive results by fully specifying the economic environment.

In a similar spirit to our approach, Lustig and Verdelhan (2019), Jiang, Krishnamurthy, and

Lustig (2023b), and Or lowski, Tahbaz-Salehi, Trojani, and Vedolin (2023) derive results

robust to the details of the macroeconomic environment for the case of partial integration.

Our analysis provides the common thread of how financial markets constrain the exchange

rate across all situations of incompleteness, partial integration, and intermediation.

7Hassan, Mertens, and Wang (2024) identify a tension between calibrated single-country economies and
the exchange rate risk premium under complete markets.
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Our interest in intermediate market structures is motivated by evidence of weak connec-

tion of both asset prices and macroeconomic quantities across countries. Bansal (1997) and

Backus, Foresi, and Telmer (2001) find a weak relation between the relative behavior of the

yield curve across countries and the exchange rate. Chernov and Creal (2023) highlight that

this evidence can be consistent with the absence of arbitrage opportunities.8 Hau and Rey

(2004, 2006) find a stronger, yet incomplete, connection of the exchange rate with cross-

country equity returns. Our analysis shows that these facts per se do not constitute a test

of market structure. However, they are informative about the restrictions that are imposed

on the exchange rate within specific market structures.

On the real side, Backus, Kehoe, and Kydland (1992), Backus and Smith (1993) and

Kollmann (1995) highlight the low correlation of consumption across countries that cannot

be explained by variation in the real exchange rate in standard complete market models.

Furthermore, the literature documents a pervasive home bias in portfolios (see e.g. French

and Poterba, 1991; Lewis, 1999), providing further evidence suggestive of imperfect risk

sharing. Heathcote and Perri (2014) provide an overview of the literature on the efficiency

of international risk sharing.

Lastly, we connect to the large literature exploring the sources of shocks to exchange rates.

For example, Engel and West (2005) and Chahrour, Cormun, De Leo, Guerrón-Quintana, and

Valchev (2023) emphasize news shocks about future macro fundamentals, Gourinchas and

Rey (2007) and Pavlova and Rigobon (2007) focus on trade shocks and imbalances, Chen and

Rogoff (2003) and Ayres, Hevia, and Nicolini (2020) study commodity shocks, Stavrakeva

and Tang (2019), Eichenbaum, Johannsen, and Rebelo (2021) and Fukui, Nakamura, and

Steinsson (2023) emphasize monetary shocks and regimes, Adrian, Etula, and Shin (2010)

and Lilley, Maggiori, Neiman, and Schreger (2022) focus on financial shocks, and Itskhoki

and Mukhin (2024) provide a review. We demonstrate that to understand how a specific

source of shocks affect the exchange rate, it is crucial to know whether financial markets

allow this shock to be traded globally.

8Maurer and Tran (2021) and Sandulescu, Trojani, and Vedolin (2021) consider the problem of recovering
SDFs compatible with asset returns expressed in two different currencies.
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1 Framework

The aim of our analysis is to characterize the joint restrictions imposed by financial risk

sharing on the behavior of three endogenous objects: local SDFs, asset returns, and the

exchange rate. We start from local financial markets: the returns of assets available in

each country are priced by a local SDF. For the results in this section, we do not need to

take a stand on the mechanism by which local SDFs emerge, but for ease of exposition we

assume they arise from IMRSs of representative households. Next, trading in international

markets leads to constraints on the exchange rate.9 We characterize these constraints across

all market structures, that is, assumptions about which assets are traded and who trades

them.

Formally, our exploration of financial markets revolves around two sets of equilibrium

restrictions. First, Euler equations must hold with respect to local SDFs for each asset

households invest in, in their respective currencies. These conditions are the point of contact

of local economies with financial markets. Second, we assume that there are no arbitrage

opportunities in international markets, after converting asset returns to the same currency.

This section introduces our representation of alternative market structures, the corresponding

equilibrium conditions, and then defines the concept of globally-traded shocks that play a

central role in our analysis of the exchange rate.

1.1 Market structure

We consider settings with two representative households — home and foreign — each trad-

ing a set of assets, H and F , respectively. These sets can contain subsets of local assets

and foreign assets converted to local currency. Figure 1 demonstrates some examples. For

instance, in autarky H contains domestic stocks and bonds, while F contains the foreign

ones, and there is no intermediary that can trade across these sets of assets. Markets are

fully integrated when H and F contain the same set of assets, while in partially integrated

9Naturally, these are equilibrium links rather than a causal chain. A researcher can start from their
favorite model of local asset pricing and characterize what risk sharing implies for the exchange rate’s
behavior across market structures; we follow this path in Section 3. Alternatively, one can start from data
on the exchange rate and returns and consider implications for SDFs; see Section 4.
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Figure 1: Examples of Market Structures

A. Autarky

H F

B. Partially integrated

H F

H F

C. Intermediated

I

H F

I

H F

The figure illustrates different market structures. H and F are the sets of assets invested in by the home
and foreign household. Panel A corresponds to financial autarky. Panel B corresponds to partial integration,
symmetric or asymmetric. Panel C corresponds to an intermediated market, with an intermediary I trading
some or all assets.

markets H and F only have a subset of assets in common.10 Markets are complete when H

and F contain (or span) the full set of Arrow-Debreu securities.

Further, we consider a set I of assets traded in international markets. Assets can be

included in this set for two reasons. First, it could be that home and foreign households

trade some assets in common, as in partially or fully integrated cases. Then, either the

home or foreign household can be considered as an international intermediary, with I = H

or I = F , respectively. Second, it could be that financial intermediaries (one or many) trade

across borders, even if households do not, as in the examples in panel C of Figure 1. In this

case, I contains the assets from H and F that intermediaries can trade.

Our main result is that, in this large family of market structures, restrictions on the

exchange rate coming from risk sharing between households are detemined by the properties

of returns in H ∩ I expressed in domestic currency and returns in F ∩ I expressed in foreign

currency. To continue our examples, if markets are partially integrated and I = H, then

H∩I = H are the assets traded by the domestic household and F ∩I = F ∩H are the assets

traded by both households. In intermediated markets, H ∩ I is the set of assets traded both

by the domestic household and the intermediaries; ditto for F ∩ I.

10An example of a fully integrated market structure is when H and F both contain a domestic sovereign
bond and a foreign equity index. As another example, adding a foreign sovereign bond to F , but not to H
makes the market structure partially integrated. We discuss more examples in Appendix B.2.
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The base assets in the set H ∩ I have log returns rrrt+1 = (r1,t+1, . . . , rN,t+1) in home

currency. We assume that this collection includes a risk-free asset with return rft known at

time t. We consider all feasible portfolios that can be constructed from these assets. The

corresponding set of log returns is:

rrrp,t+1 =
{
rp,t+1 = log

(
www′t exp(rrrt+1)

) ∣∣ ∃wwwt ∈ RN : www′tιιι = 1
}
.

Furthermore, for our analysis in the main text, we assume that asset returns are log-normal,

that is rrrt+1 is multivariate normal with mean µµµt and variance-covariance matrix ΣΣΣt. Similarly,

the returns of base assets in F ∩ I are rrr∗t+1 in foreign currency, log-normal of size N∗, and

contain a foreign-currency risk-free rate r∗ft.
11 The corresponding set of portfolio returns is

rrr∗p,t+1. Throughout the paper, we use the Campbell and Viceira (2002) approximation for log

portfolio excess returns with the relevant derivations described in Appendix A. In Appendix

D, we show how our results generalize to an environment with an arbitrary distribution of

returns without portfolio approximation.

1.2 Pricing Assumptions

We introduce two sets of assumptions, which enable us to characterize how risk sharing

between households constrains the behavior of the exchange rate.

Local Euler equations We specify valuation mechanisms for each of the households with

SDFs m at home and m∗ abroad. These SDFs value assets as follows.

Assumption 1. The domestic (log) stochastic discount factor mt+1 prices all assets in H

in domestic currency. In particular, it satisfies the Euler equation:

∀rt+1 ∈ rrrp,t+1 : Et exp(mt+1 + rt+1) = 1. (3)

Similarly, the foreign log SDF m∗t+1 prices all assets in F in foreign currency, and

∀r∗t+1 ∈ rrr∗p,t+1 : Et exp(m∗t+1 + r∗t+1) = 1. (4)

11Our analysis generalizes to an environment without risk-free assets. Specifically, one can prove versions
of Proposition 1 and 2 that do not rely on the presence of risk-free assets; see Appendix C.
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These Euler equations imply that the expectation of an excess return is related to its

covariance with the respective SDF. In particular, under the log-normal assumption, equa-

tions (3) and (4) become:

∀rt+1 ∈ rrrp,t+1 : Et rt+1 − rft +
1

2
vart(rt+1) = −covt(mt+1, rt+1), (5)

∀r∗t+1 ∈ rrr∗p,t+1 : Et r
∗
t+1 − r∗ft +

1

2
vart(r

∗
t+1) = −covt(m∗t+1, r

∗
t+1). (6)

Recall that rrrp,t+1 and rrr∗p,t+1 are the sets of feasible portfolio returns constructed from assets

in H ∩ I and F ∩ I, respectively, which is all we need for the derivation of our formal results.

The Euler equations (3) and (4), or respectively their log-normal versions (5) and (6),

act as the point of contact of financial markets with the respective local economies. These

conditions hold irrespective of the remainder of the economic environment and connect local

asset returns with local SDFs. Our results apply to any admissible pair of home and foreign

SDFs that are consistent with equilibrium and observed asset returns. In this paper, we are

interested in situations when these SDFs are equal to IMRSs of representative households

and, thus, reflect local aggregate macroeconomic conditions.12 Appendix G discusses how

our results apply to SDFs constructed using asset returns only without connection to the

broader economic environment.

Assumption 1 clarifies what it takes for an asset to be included in H or F . Households

have to freely trade this asset so that the corresponding Euler equation holds. Equilibrium

in the financial market may involve borrowing or short-sale constraints, infrequent portfolio

adjustment, or convenience yield on certain assets.13 In all these cases, the Euler equation

does not always hold with equality, i.e. it features a wedge. Therefore, such assets are not

included in the sets H and F (for a given time period t). This exclusion does not mean that

these assets are not part of the equilibrium, nor that they are irrelevant for the exchange

rate. It simply implies that standard risk-sharing conditions do not apply to such assets.

12For example, with CRRA utility, a representative household’s IMRS is mt+1 = −ρ − γ∆ct+1 − πt+1

where ρ is the preference discount rate, γ is the coefficient of risk aversion, ct is log aggregate domestic
consumption, and πt is CPI inflation.

13Some constraints are not readily observable in the data. For instance, even though currencies may seem
easily tradable, households seldom engage with them in practice. This observation suggests the existence of
underlying frictions in such investments, perhaps stemming from a lack of sophistication or a home currency
bias (see French and Poterba, 1991, and the literature that follows).
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Actually, the associated wedges in Euler equations can be an important source of exchange

rate shocks.

International arbitrage So far, none of our analysis involved the exchange rate as we

described the constraints imposed on equilibrium by local asset pricing. In order to charac-

terize the interaction between the exchange rate and local finance, one has to take a stand

on how international financial markets operate. To isolate the risk-sharing role of these mar-

kets, we make a minimal assumption about them: we assume that there are no arbitrage

opportunities for assets in I.

Formally, the set of international returns in I combines the domestic and foreign subsets

of returns converted to the domestic currency. Our conclusions are unchanged if we focus on

international arbitrage in foreign currency. Following our notation, international portfolios

are generated by the base assets rrrIt+1 = (rrrt+1, rrr
∗
t+1 + ∆st+1), where ∆st+1 is the log home

currency depreciation rate. We denote by rrrIp,t+1 the set of international portfolios generated

by these base assets.

Assumption 2. There are no arbitrage opportunities in the set of international returns

rrrIp,t+1. In the log-normal setting, this assumption is equivalent to:

∀rp,t+1 ∈ rrrIp,t+1 : vart(rp,t+1) = 0 ⇒ Et rp,t+1 = rft. (7)

In words, any portfolio that has no risk must earn the risk-free rate of return.14 This

condition is equivalent to the existence of an international SDF mI . For example, this SDF

could be the discount factor of one of the households (in markets with partial integration) or

of an international arbitrageur (in intermediated markets). However, unlike for households,

we do not assume any knowledge of this SDF beyond its existence.

Assumption 2 reflects our focus on characterizing the set of cross-equation restrictions

imposed by no arbitrage on (mt+1,m
∗
t+1,∆st+1) and asset returns (rrrt+1, rrr

∗
t+1) without taking

a stand on a specific mI that supports no arbitrage. Importantly, this assumption does not

imply that the characteristics of international arbitrageurs do not matter for the exchange

14In a log-normal setting, condition (7) is equivalent to the absence of arbitrage opportunities. In more
general settings, it is a necessary condition for no arbitrage (Campbell, 2017, p.92).
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rate. Just like wedges in the household Euler equations, shifts in mI can act as a source of

exchange rate shocks.

From the perspective of models with fully integrated markets, the introduction of mI

may appear redundant, as either the home or the foreign households can act as international

intermediaries. In such market structures, local Euler equations and a simple currency

conversion of asset returns fully characterize risk sharing. This insight does not extend to

the much larger class of market structures that we consider: our formalism unifies predictions

for models of partial integration and intermediation.

Coming from theories of intermediation, it may also be tempting to make away with

local households altogether. This corresponds to replacing both households in Assumption 1

by the arbitrageur from Assumption 2 who prices every asset. Such an approach does not

introduce informative risk-sharing restrictions as it effectively considers the same investor

twice. Mechanically, the conversion of an intermediary’s SDF from domestic to foreign

currency is mI∗ = mI + ∆s, irrespective of market structure — an accounting relation, not

an equilibrium one (see Appendix G for further discussion).

Taking stock, the sets H,F and I together with Assumptions 1 and 2 constitute our

representation of risk sharing. This representation does not rule out any equilibrium models.

Instead, any model can be mapped into this structure by appropriately identifying the asset

sets that respect the properties postulated in the two assumptions. This includes theories

with segmented markets or Euler equation wedges. In such models, when households can

freely trade only local risk-free bonds, we typically have H ∩ F ∩ I = ∅. Then, risk-sharing

forces may impose no constraints on the exchange rate, in which case it is entirely determined

by other equilibrium conditions. Of course, we are mainly interested in circumstances when

risk sharing imposes some constraints on the equilibrium exchange rate behavior.

1.3 Globally-traded, locally-traded and unspanned shocks

For our analysis of the exchange rate below, we introduce the concept of globally-traded

shocks. We use tilde to denote the innovation (or shock) to any variable x, that is, x̃t+1 ≡

xt+1 − Etxt+1 and hence vart(x̃t+1) = vart(xt+1).
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Definition 1. The set of globally-traded shocks is

εεεgt+1 =
{
εgt+1

∣∣ ∃λλλ ∈ RN , λλλ∗ ∈ RN∗
: εgt+1 = λλλ′ r̃rrt+1 = λλλ∗′ r̃rr∗t+1

}
. (8)

Globally-traded shocks can be traded by local investors in their local currency in both

countries. Not only must such shocks affect returns in the two countries, but investors must

also have access to a trading strategy in each country that isolates the shock from other

sources of risk. Appendix B shows how to construct a basis of εεεgt+1 using the covariance

matrix of rrrt+1 and rrr∗t+1.

Globally-traded shocks can arise for two reasons. First, they can emerge from common

underlying economic shocks (e.g., productivity) that determine returns as long as such shocks

can be replicated by local-currency portfolio returns in the two countries. Second, globally-

traded shocks can emerge without common fundamental shocks as a result of asset trading

across countries — either directly by households or via an intermediary. Note that an

asset traded by both households (e.g., an individual stock) does not immediately constitute

a globally-traded risk due to currency conversion. However, a commonly traded excess

return does result in a globally-traded risk as the exposure to currency risk is eliminated

in the construction of the excess return. We provide examples of globally-traded shocks in

Appendix B.2.

Locally-traded shocks εεεt+1 and εεε∗t+1 are the residuals of return innovations r̃rrt+1 and r̃rr∗t+1,

respectively, after controlling for globally-traded shocks εεεgt+1.15 Intuitively, εεεgt+1 corresponds

to the intersection of the spaces of returns r̃rrp,t+1∩ r̃rr∗p,t+1, while (εεεgt+1, εεεt+1, εεε
∗
t+1) is the union of

these spaces r̃rrp,t+1 ∪ r̃rr∗p,t+1. Finally, we refer to any other sources of variation orthogonal to

asset returns (r̃rrt+1, r̃rr
∗
t+1) — or equivalently, orthogonal to locally-traded and globally-traded

shocks (εεεgt+1, εεεt+1, εεε
∗
t+1) — as unspanned shocks. Unspanned shocks are not traded in either

home or foreign financial market.

The classification into globally-traded, locally-traded and unspanned shocks characterizes

how risks can be shared in a given financial market structure, as opposed to identifying the

origin of these shocks. The latter would require a fully specified structural model. Each group

15Similarly to Definition 1 for globally-traded shocks, locally-traded shocks are formally defined by εεεt+1 =
{εt+1|∃λλλ` ∈ RN : εt+1 = λλλ′`r̃rrt+1 ⊥ εεεgt+1}.
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of shocks can, in general, contain aggregate or idiosyncratic shocks, as well as macroeconomic

or financial shocks.

Exchange rate decomposition We decompose the exchange rate depreciation ∆st+1 into

four components. First, we partition the depreciation rate into its expectation Et∆st+1 and

the depreciation shock ∆̃st+1 = ∆st+1 − Et∆st+1. Next, we use the taxonomy of shocks

introduced above, and decompose the depreciation shock into a globally-traded, locally-

traded and unspanned components:

∆̃st+1 = gt+1 + `t+1 + ut+1. (9)

We denote with gt+1 ∈ εεεgt+1 the component of ∆̃st+1 that is spanned by globally-traded risks.

Correspondingly, the local component `t+1 is spanned by locally-traded risks, i.e. it is a linear

combination of εεεt+1 and εεε∗t+1 and orthogonal to εεεgt+1. Finally, ut+1 is the component of the

depreciation shock unspanned by asset returns, i.e. orthogonal to (εεεgt+1, εεεt+1, εεε
∗
t+1).

The decomposition (9) is unique and specific to a given market structure, and it plays a

central role in our characterization of restrictions on the behavior of the exchange rate. In

particular, it applies across broad classes of market structure as follows.

Lemma 1. (a) In integrated markets, the exchange rate is spanned by asset returns, ut+1 = 0.

(b) In fully integrated markets, the exchange rate and all asset returns are globally-traded

risks, ∆̃st+1 = gt+1 and r̃rrp,t+1 = r̃rr∗p,t+1 = εεεgt+1. (c) Intermediated markets can support any

decomposition of the exchange rate risk into gt+1, `t+1 and ut+1 components.

To understand this lemma, note that the spanned and unspanned components of the

depreciation rate in decomposition (9) can be constructed from asset returns:

∆̃st+1 = r̃p,t+1 − r̃∗p,t+1 + ut+1, (10)

where rp,t+1 ∈ rrrp,t+1 and r∗p,t+1 ∈ rrr∗p,t+1 are the returns on the pair of portfolios that maximize

the R2 for explaining the exchange rate. In (partially) integrated markets, there exists at

least one asset traded in both countries, and hence ri,t+1 = r∗i,t+1 + ∆st+1 holds for this asset
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by simple conversion of currency units. Using this asset in equation (10) in home and foreign

currency as r̃p,t+1 and r̃∗p,t+1 respectively, we see that ut+1 = 0, point (a). When markets are

fully integrated, all assets are traded across countries and the restriction becomes stronger:

innovations to all asset returns and the exchange rate are globally-traded shocks, point (b).16

In contrast, intermediated markets generally have no such restrictions and the unspanned

component ut+1 can play an important role in the exchange rate shock, point (c).

2 The general risk-sharing view of exchange rates

In this section, we characterize the restrictions on the behavior of the exchange rate imposed

by the absence of international arbitrage and given the properties of returns on traded assets,

rrr and rrr∗, and local SDFs m and m∗ that price them. We show that Assumptions 1 and 2

impose two sets of necessary restrictions on the depreciation rate: one on the depreciation

shocks ∆̃st+1, and another on the expected depreciation Et∆st+1. In Appendix C, we further

show that these restrictions are sufficient as well, that is they characterize all constraints

imposed by the risk-sharing role of financial markets on the behavior of the exchange rate.

In a complete market setting, these two sets of restrictions lead to the well-known asset

market view of exchange rates. Our analysis spells out the implications of these restrictions

in a much larger set of market structures. All the proofs are in Appendix C. Appendix

D derives exact non-linear versions of the results which do not require any distributional

assumptions and hence include the case of disasters.

2.1 Exchange rate shocks

It is natural to think that thanks to risk-sharing, relative marginal utilities of the two house-

holds in their respective currencies m∗ −m line up with the depreciation rate ∆s, as is the

case under complete markets. We now show how this logic is altered in a general market

structure, and only applies along the dimensions of risk that both households trade.

16This result relies on the fact that both home- and foreign-currency risk-free assets are available to all
investors, which is sufficient to make the exchange rate risk a globally-traded shock by means of a simple
carry trade strategy. Without risk-free assets, the exchange rate risk is not necessarily globally traded even
in fully integrated markets, whereas all excess returns are still globally traded.
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Proposition 1. Under Assumptions 1 and 2, the globally-traded component of the depre-

ciation shock, gt+1 in decomposition (9), must coincide with the component of the SDF

differential that is spanned by the globally-traded shocks:

proj(m̃∗t+1 − m̃t+1|εεεgt+1) = proj(∆̃st+1|εεεgt+1) = gt+1. (11)

Said differently, start from the pair of local SDFs and regress them on all globally-traded

shocks. The predicted value of this regression must equal the globally-traded component of

the exchange rate, gt+1:

m̃∗t+1 − m̃t+1 = gt+1 + vt+1 with vt+1 ⊥ εεεgt+1. (12)

Because globally-traded shocks are constructed from asset returns alone, this means that

Proposition 1 allows to determine a component of the exchange rate by no arbitrage without

any knowledge of its statistical properties. In other words, it is sufficient to know local

finance summarized by (mt+1,m
∗
t+1) and (rrrt+1, rrr

∗
t+1) to construct gt+1.

In fully integrated markets, ∆̃st+1 = gt+1 by Lemma 1, and hence the entire exchange

rate shock can be constructed from local finance state-by-state. This is a powerful result

that generalizes the asset market view (AMV) of the exchange rate beyond the case of

complete markets (Backus, Foresi, and Telmer, 2001; Brandt, Cochrane, and Santa-Clara,

2006). When the exchange rate risk is a globally-traded shock, Proposition 1 generalizes the

familiar complete market relationship ∆st+1 = m∗t+1 −mt+1 to:

∆̃st+1 = proj(m̃∗t+1 − m̃t+1|εεεgt+1), (13)

where the right-hand side is still fully revealed in the local financial market.17

However, what is missing from Proposition 1 is just as important as what is there. Risk

sharing and no-arbitrage do not impose any restrictions on the local component of the depre-

17In complete markets, the pair of Arrow-Debreu state prices in respective local currencies pins down the
value of the exchange rate depreciation in that state by no-arbitrage: any deviation from this value would
compel an investor to buy the state where it is cheaper and sell where it is more expensive, after conversion
into the same currency. Proposition 1 extends this logic to circumstances with more sparse asset spaces,
replacing the concept of state prices with a more general concept of globally-traded shocks εg. The case of an
Arrow-Debreu security corresponds to εg that is an indicator random variable for a given state of the world.
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ciation rate `t+1 or its unspanned component ut+1. In partially integrated or intermediated

markets, these two components may dominate the dynamics of the exchange rate over and

above the shared component gt+1. For example, many popular segmented market models cor-

respond to the case where gt+1 = `t+1 = 0 and ∆̃st+1 = ut+1, with the equilibrium exchange

rate behavior unconstrained by risk-sharing forces, and also consistent with the general pre-

diction of Proposition 1. In Section 3, we discuss the implications of this proposition in the

interim cases where neither gt+1 = 0 nor ∆̃st+1 = gt+1.

How does the absence of arbitrage lead to this result? In fully integrated markets, local

and foreign investors must agree on the price of all payoffs after conversion to a common

currency, resulting in covt(m
∗
t+1−mt+1−∆st+1, rt+1) = 0 for every rt+1 ∈ rrrp,t+1, and indeed

εεεgt+1 = r̃rrp,t+1 in this case by Lemma 1. Proposition 1 is a generalization of this result that

holds across the full range of market structures. To preclude arbitrage opportunities, there

must be an agreement between home and foreign investors’ pricing of risks that they both

trade in their respective currencies, which constrains the behavior of the depreciation shock.

Without a change of currency, the argument is standard: an intermediary can buy the

globally-traded risk εgt+1 in the home market (valued by mt+1) and sell it in the foreign market

(valued by m∗t+1), hence no-arbitrage requires that covt(m
∗
t+1 −mt+1, ε

g
t+1) = 0. This logic

extends to the case with currency conversion, and no arbitrage requires the so-called quanto

adjustment covt(∆st+1, ε
g
t+1) to expected returns. This implies that the comovement of the

depreciation rate with globally-traded shocks must be the same as that of the relative SDFs,

covt(m
∗
t+1 −mt+1, ε

g
t+1) = covt(∆st+1, ε

g
t+1). In other words, if the projection g of ∆s onto

εεεg is different from that of m∗ −m, there exists an arbitrage strategy for the international

intermediary.18

Conversely, for shocks that are not traded by both investors in their respective curren-

cies, it is impossible to construct candidate arbitrage portfolios that relate the conditional

properties of the exchange rate shock to those of the local SDFs (see Appendix C.2). By

18To prove Proposition 1, in Appendix C we use a zero-cost differential carry trade which is long one unit
of a home risk, and short one unit of a foreign risk, with both legs of the trade financed at the respective
local risk-free rates. Unlike the conventional carry trade, differential carry eliminates the direct exposure to
the exchange rate risk. As a result, this trade acts as the arbitrage strategy for globally-traded risks that
pins down the projection of the exchange rate on εgt+1.
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consequences, risk sharing and no-arbitrage do not constrain the components ` and u of the

exchange rate that are orthogonal to εεεg.

2.2 Expected depreciation rate

We turn to restrictions on the behavior of the expected depreciation rate Et∆st+1. Start

from the projection of the exchange rate on asset returns, represented by the two portfolios

rp,t+1 ∈ rrrp,t+1 and r∗p,t+1 ∈ rrr∗p,t+1 in equation (10). We define δt as the difference between the

two portfolios’ expected returns given by (5) and (6):

δt ≡ Et rp,t+1 − Et r∗p,t+1 =
[
rft − covt(mt+1, rp,t+1)− 1

2
vart(rp,t+1)

]
−
[
r∗ft − covt(m∗t+1, r

∗
p,t+1)− 1

2
vart(r

∗
p,t+1)

]
. (14)

The following proposition relates the behavior of the expected depreciation rate to spanning

of the exchange rate and this quantity δt, which only depends on local finance — local asset

returns and SDFs.

Proposition 2. The expected depreciation rate is pinned down by no-arbitrage iff the ex-

change rate is spanned by asset returns, that is when ut+1 = 0. In this case:

Et∆st+1 = δt = rft − r∗ft︸ ︷︷ ︸
UIP

− covt(mt+1,∆st+1)︸ ︷︷ ︸
exchange rate risk premium

− 1

2
vart(∆st+1)︸ ︷︷ ︸

convexity

+ θt, (15)

where θt ≡ covt(m
∗
t+1 −mt+1 −∆st+1, r

∗
p,t+1), which becomes θt = 0 when the exchange rate

is spanned by globally-traded shocks and ∆̃st+1 = gt+1. Otherwise, if ut+1 6= 0, no-arbitrage

does not constrain the value of Et∆st+1.

The central implication of Proposition 2 is that it delineates two cases depending on

the relation of the exchange rate with asset returns: either local market pricing determines

expected depreciation exactly, or it says nothing about it. The expected depreciation rate

is closely related to the exchange rate risk premium. Exposure to this risk can be obtained

by engaging in the carry trade using the spanning portfolios. This risk premium is pinned

down by pricing in local financial markets if and only if the international arbitrageur can use
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locally traded assets to sell off this risk. Conversely, the absence of arbitrage has no bearing

on this quantity if the exchange rate is not spanned by asset returns, that is when ut+1 6= 0.

Spanned exchange rate When the exchange rate is spanned by local asset returns, there

exists a unique value of the expected depreciation Et∆st+1 given by (15) which is consistent

with no international arbitrage. The international arbitrageur uses the two local markets

to price the exchange rate risk. Hence, the two local SDFs play a role in the expected

depreciation rate. This insight explains the presence of the novel adjustment term θt in

equation (15) relative to the standard complete market formula with θt = 0. It also leads to

a symmetric expression to equation (15) which emphasizes the foreign SDF m∗t+1:

δt = rft − r∗ft − covt(m∗t+1,∆st+1) +
1

2
vart(∆st+1) + θ∗t , (16)

where θ∗t = covt(m
∗
t+1 −mt+1 −∆st+1, rp,t+1).

It is only when the local investors are able to replicate the exchange rate on their own

that their individual Euler equations, and hence individual SDFs, are enough to obtain the

expected depreciation. If the home (foreign) investor can trade the entire spanning portfolio,

then θt = 0 (θ∗t = 0), and the standard complete market formula for the home (foreign)

investor applies. For example, this situation occurs in settings in which the home (foreign)

investor acts as an international arbitrageur or has access to a currency carry trade.19 Both

home and foreign investors price the exchange rate risk, and hence θt = θ∗t = 0, when they are

both able to trade it — that is, when the exchange rate is a globally-traded risk, ∆̃st+1 = gt+1.

Unspanned exchange rate In intermediated markets, the exchange rate shock may not

be spanned by traded assets (recall Lemma 1). In this case, the expectation depreciation

can deviate from δt in (14) by an arbitrary wedge ψt, that is:

Et∆st+1 = δt + ψt. (17)

19Note that by Proposition 1, θt = 0 when r∗p,t+1 is a globally-traded risk, that is r̃∗p,t+1 ∈ εεε
g
t+1 = r̃rrt+1∩r̃rr∗t+1.

This means that the home household can trade both rp,t+1 and r∗p,t+1 risks which span the exchange rate
shock, giving the household access to an effective currency carry trade.
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This flexibility might lead to implausibly large trading profits for the international investor.

One can be more informative about these deviations ψt by imposing a condition that is

stronger than the absence of arbitrage in Assumption 2.

Assumption 3 (No quasi-arbitrage). There is an upper bound B on Sharpe ratios in inter-

national markets:

∀rIp,t+1 ∈ rrrIp,t+1 :
∣∣∣Et rIp,t+1 +

1

2
vart(r

I
p,t+1)− rft

∣∣∣ ≤ B
√
vart(rIp,t+1). (18)

This assumption restricts the Sharpe ratio of trades in international markets. Such

bounds have a long tradition in finance, going back to Ross (1976), Cochrane and Saa-

Requejo (2000), and Kozak, Nagel, and Santosh (2020). Intuitively, it can be motivated

by the view that if trades that are too profitable emerged in equilibrium, new financial

institutions would step in to take advantage of them. Under this view, we obtain the following

condition.

Proposition 3. Under Assumption 3, the wedge ψt in the expected depreciation rate in (17)

must satisfy:

∣∣∣ψt +
1

2
vart(ut+1)

∣∣∣ ≤ B
√
vart(ut+1) ≡ B

√
(1−R2)vart(∆st+1), (19)

where R2 is the R-squared in the regression of ∆st+1 on rrrt+1 and rrr∗t+1.

This result generalizes Proposition 2 by limiting the range of possible expected depreci-

ations in the case of an unspanned exchange rate. It indicates that the deviation ψt from

the risk premium in the spanned case in (15) is bounded by the volatility of the unspanned

shock ut+1 in the depreciation rate decomposition (9). In turn, ut+1 may also be shaped by

the properties of ψt as the result of an equilibrium fixed point (see Itskhoki and Mukhin,

2021, as well as our discussion below).
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2.3 Relationship between the results

When globally-traded risks are the result of common trading of assets in H ∩ F , e.g. in

(partially) integrated markets, Proposition 2 obtains as a standard asset pricing result from

local Euler equations in Assumption 1. Furthermore, in this case, Proposition 1 is a direct

consequence of Proposition 2. Indeed, any two globally-traded assets i, j ∈ H∩F provide two

alternative ways to span the exchange rate in Proposition 2, and we can write condition (15)

in two ways with respective θit and θjt. Hence, it must be that θit−θjt = 0, which corresponds

to the projection requirement in Proposition 1 for the globally-traded excess return of asset

i over j.20

When globally-traded risks arise from spanning of the same shocks by distinct assets

in H and F , e.g. in intermediated markets, Propositions 1 and 2 are not directly linked.

Proposition 2 remains a standard asset pricing result that links the expected return of a

trade to its risk measured by the covariance of its return with SDF, provided the caveat that

both home and foreign SDFs are generally required for no-arbitrage pricing of the exchange

rate return. Proposition 1 is less conventional, as it characterizes the exchange rate shock

rather than its expected return. Furthermore, Proposition 1 applies even when there is no

spanning of the exchange rate in Proposition 2 and thus equation (15) does not hold. In

other words, the finance exchange rate disconnect (in the sense that ut+1 6= 0) does not imply

absence of international risk sharing (gt+1 = 0), as we study next.

3 The dual role of financial markets

The general results of the previous section inform our understanding of how finance interacts

with the exchange rate beyond the standard market structures studied in the literature. In

this section, we apply these results to address three questions suggested by the implications

of these standard market structures. First, does risk sharing necessarily lead to the currency

puzzles? Second, is extreme segmentation necessary for financial markets to be a source of

20By definition of θt in (15), θit−θjt = covt(m
∗
t+1−mt+1−∆st+1, ri,t+1−rj,t+1) = 0 where ri,t+1−rj,t+1 =

r∗i,t+1−r∗j,t+1 are the return differentials (excess returns) in home and foreign currency, respectively, forming
a globally-traded risk. Note that this condition corresponds to the condition in Lustig and Verdelhan (2019)
when i and j are the two risk-free assets. In this case, ri,t+1 − rj,t+1 = ∆st+1, and hence vart(∆st+1) =
covt(m

∗
t+1 −mt+1,∆st+1).
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exchange rate volatility? Third, are these two roles of financial markets mutually exclusive?

We answer all three questions by the negative. Furthermore, we characterize which features

of the market structure offer solutions to these challenges.

Propositions 1 and 2 emphasize the role of spanning of the exchange rate by asset returns

and the prominence of the globally-traded shocks captured by gt+1 in this decomposition.

We show that the size of globally-traded shocks vart(gt+1) is a sufficient statistic pinning

down the properties of a given market structure. Changing the market structure changes

vart(gt+1) and the model’s implication for the exchange rate for a given structural pair of

SDFs. All models that share the same vart(gt+1) have similar predictions — even when the

market structures may seem very different, as we see below.

We focus our analysis on specific properties of the exchange rate — namely, its volatility,

cyclicality and the currency risk premium — which have proved puzzling for traditional mod-

els in macro-finance. In doing so, we take a complementary approach to a broad literature

which has made progress by altering preferences or aggregate dynamics but maintained the

assumptions that markets are complete and integrated. In contrast, we hold the model of

household IMRSs and the aggregate data that inform their properties fixed, hence taking m

and m∗ as given. We use our general theoretical results and vary the market structure —

namely, what assets are traded and who can trade them — to study its implications for the

currency puzzles.

3.1 The currency puzzles

The asset market view (AMV) of the exchange rate under complete and integrated markets

results in:

∆st+1 = m∗t+1 −mt+1, (20)

which characterizes the entire exchange rate depreciation — both its expectation Et∆st+1

and shocks ∆̃st+1 — from the local SDFs. When the local SDFs are given by the conventional

IMRSs of representative households disciplined with macro-data on aggregate consumption

growth and inflation, the AMV results in three seminal finance puzzles about the behavior

of the exchange rate.
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First, consider the variance of the exchange rate depreciation rate implied by (20):

vart(∆st+1) = vart(m
∗
t+1 −mt+1)

= vart(m
∗
t+1) + vart(mt+1)− 2covt(mt+1,m

∗
t+1). (21)

Brandt, Cochrane, and Santa-Clara (2006) argue that this equation leads to the volatility

puzzle, with the exchange rate being not volatile enough. Typically observed Sharpe ratios on

domestic assets imply highly volatile IMRSs, much more so than exchange rate depreciation.

The mild correlation of macroeconomic quantities across countries suggests that the IMRSs

are not correlated enough for the last term of equation (21) to offset this high variance and

obtain realistic exchange rate risk.21

Second, equation (20) also implies:

vart(∆st+1) = covt(∆st+1,m
∗
t+1 −mt+1), (22)

and corrt(∆st+1,m
∗
t+1 −mt+1) = 1. Changes in exchange rates must be perfectly correlated

with changes in relative marginal utilities of the domestic and foreign households, that is,

the home currency depreciates in relatively good times for home investors. As pointed out

by Backus and Smith (1993), this implication is counterfactual for various measures of good

times, leading to the cyclicality puzzle.

Finally, the expected depreciation rate is:

Et∆st+1 = rft − r∗ft −
1

2
vart(∆st+1)− covt(mt+1,∆st+1) (23)

The last term, a premium for currency risk, generates deviations from uncovered interest

parity (UIP), a well-documented empirical feature. However, standard international models

struggle with generating the empirically observed magnitude and dynamics of currency risk

premium, resulting in the risk premium puzzle (see Engel, 2014, for a review).

21A typical annual standard deviation of the exchange rate is 0.1, while a typical annual Sharpe ratio is
of the order of 0.5, which is a lower bound on the standard deviation of SDFs because of the Hansen and
Jagannathan (1991) bound. Then, according to (21), the correlation between m and m∗ must be at least

1− 1
2
0.12

0.52 = 0.98, which is much in excess of any empirical measures of cross-country comovement.
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Figure 2: Volatility, cyclicality, and currency puzzles

Data

CMvart(m
∗
t+1 −mt+1)

Cyclicality
covt(∆st+1,m

∗
t+1 −mt+1)

Variance
vart(∆st+1)

The grey area represents the infeasible combinations of volatility and cyclicality of depreciation rates due to
the Cauchy-Schwarz inequality. The point labeled as CM illustrates the implications of the complete market
setting for the properties of the depreciation rate. The point labeled Data is a stylized representation of the
exchange rate puzzles summarized in (24).

We assume that the household IMRSs that define m and m∗ are such that the exchange

rate’s cyclicality, volatility, and risk premium are counterfactual under complete and inte-

grated markets, resulting in the currency puzzles. That is, we assume that for given SDFs

m and m∗ and data on the exchange rate, we have:

0 ≈ covt(∆st+1,m
∗
t+1 −mt+1)� vart(∆st+1)� vart(m

∗
t+1 −mt+1) (24)

and a currency risk premium rft−r∗ft−Et∆st+1 that considerably exceeds covt(mt+1,∆st+1)

in absolute value — all conflicting with the AMV in (20).

In what follows, we ask how market structures beyond complete and integrated markets

constrain the properties of the exchange rate. Propositions 1 and 2 lead us to consider

volatility and cyclicality separately from the risk premium.

We use Figure 2 to visualize the exchange rate cyclicality covt(∆st+1,m
∗
t+1 −mt+1) and

volatility vart(∆st+1), where we hold the statistical properties of m and m∗—and hence

vart(m
∗
t+1 − mt+1)—as given. The point labeled ‘CM’ shows the prediction of the AMV

under complete and integrated markets summarized by (22), hence it lies on the 45-degree

line at a point with vart(∆st+1) = vart(m
∗
t+1−mt+1). The point labeled ‘Data’ is a stylized
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representation of the empirical properties of the exchange rate summarized by (24). The

distance between CM and Data represents the first two currency puzzles — volatility on the

y-axis and cyclicality on the x-axis.

Finally, the gray area in Figure 2 indicates all combinations of exchange rate volatility

and cyclicality that are infeasible due to the mechanical Cauchy-Schwarz inequality:

covt(∆st+1,m
∗
t+1 −mt+1) ≤

√
vart(∆st+1) · vart(m∗t+1 −mt+1). (25)

Correspondingly, the white cone reflects all mathematically feasible combinations.

3.2 The volatility-cyclicality tradeoff

Proposition 1 provides a general characterization of all restrictions imposed by international

risk sharing on the exchange rate shock ∆̃st+1 that, in particular, determine its volatility

and cyclicality properties. It has the following implications:22

Proposition 4. The volatility and cyclicality of the exchange rate must satisfy

volatility︷ ︸︸ ︷
vart(∆st+1) ≥ vart(gt+1) +

( cyclicality︷ ︸︸ ︷
covt(∆st+1,m

∗
t+1 −mt+1)−vart(gt+1)

)2

vart(m∗t+1 −mt+1)− vart(gt+1)
(26)

when vart(gt+1) < vart(m
∗
t+1 −mt+1), and

vart(∆st+1) ≥ vart(gt+1) = covt(∆st+1,m
∗
t+1 −mt+1). (27)

when vart(gt+1) = vart(m
∗
t+1 −mt+1).

We highlight three properties that follow from Proposition 4. First, for a given value of

vart(gt+1), the proposition introduces a tradeoff between volatility and cyclicality. The red

cones in Figure 3 illustrate this tradeoff for values of vart(gt+1) away from the boundaries as

described by condition (26): vart(gt+1) is larger for the upper dark cone than for the lower

22Proposition 4 is a consequence of (11) and the Cauchy-Schwartz inequality applied to the non-global
components of the exchange rate and SDF differential, ∆st+1 − gt+1 and m∗t+1 −mt+1 − gt+1, respectively.
The formal proof is in Appendix C.3.
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Figure 3: The volatility-cyclicality tradeoff

Data

CMvart(m
∗
t+1 −mt+1)

high vart(gt+1)

low vart(gt+1)

Cyclicality
covt(∆st+1,m

∗
t+1 −mt+1)

Variance
vart(∆st+1)

The figure illustrates the trade-off between volatility and cyclicality of the exchange rate as characterized
by (26) in Proposition 4. The dark red cone corresponds to a high value of vart(gt+1), while the light red
cone corresponds to a low value. See notes to Figure 2.

light one. The vertex (trough) of the cone corresponds to the minimum level of exchange

rate volatility vart(∆st+1) = vart(gt+1). At this point, volatility coincides with cyclicality,

covt(∆st+1,m
∗
t+1 − mt+1) = vart(gt+1). Thus, the vertex is on the 45-degree line segment

between the origin and CM. Reducing cyclicality away from this value comes at the cost of

increasing volatility.

Second, when the globally-traded component is nil, vart(gt+1) = 0, financial risk sharing

imposes no additional economic constraints on the exchange rate moments. Specifically,

condition (26) in this case recovers the mechanical Cauchy-Schwartz inequality (25) which

excludes the gray area in Figures 2 and 3.

Third, the CM point is feasible for any value of vart(gt+1), and hence under any market

structure. Furthermore, the range of possible exchange rate moments increases from the

measure zero CM point to the full white area permitted by the Cauchy-Schwartz inequality

as vart(gt+1) declines from its maximal value equal to vart(m
∗
t+1 − mt+1) to its minimal

value of 0.23 In this sense, reducing the span of globally-traded shocks vart(gt+1) does

not rule possibilities out, but instead allows possibilities in — more outcomes in terms of

23Note that by Proposition 1, and in particular by its corollary in (12), vart(gt+1) cannot ex-
ceed vart(m

∗
t+1 − mt+1), and by construction it cannot exceed vart(∆st+1), hence vart(gt+1) ≤

min{vart(∆st+1), vart(m
∗
t+1 −mt+1)}.
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second moments of the exchange rate can be consistent with equilibrium risk sharing and

no-arbitrage. Therefore, it is easier to match the data with less dense globally-traded shocks.

Proposition 4 and this discussion make clear that the range of possible exchange rate

moments is controlled by the volatility of the globally-traded component of the exchange

rate vart(gt+1). In turn, this value is determined by the structure of financial markets. That

is, the variance of the globally-traded component serves as a sufficient statistic for how the

market structure disciplines the volatility and cyclicality of the exchange rate. We explore

the interplay between market structures and the globally-traded component next.

3.3 When does risk sharing lead to the currency puzzles?

Proposition 4 suggests that the currency puzzles are not unique to complete and integrated

markets, but emerge by continuity in all models with a dominant globally-traded component

gt+1. Specifically, the puzzles arise when vart(gt+1) is large, imposing tight lower bounds on

both volatility and cyclicality of the exchange rate. As the upper bound for vart(gt+1) is given

by min{vart(∆st+1), vart(m
∗
t+1−mt+1)}, we start by exploring two types of market structures

which yield the corresponding limiting cases. In these cases the volatility-cyclicality tradeoff

takes a different shape than the cones of Figure 3. We then discuss the generic case with a

large vart(gt+1).

Spanned marginal utilities We consider first the case when the relative IMRS is spanned

by globally-traded shocks, vart(gt+1) = vart(m
∗
t+1−mt+1). This situation is close to market

completeness in the sense that households in each country are able to trade shocks to their

marginal utility. This case frequently arises in models with a small number of common

macro risks that are traded in both countries. International real business cycle (IRBC)

models would fall into this category. One could also consider various settings popular in

finance, such as habits, long-run risk, or rare disasters as long as they feature a small set of

shocks that are traded in both countries. However, this situation does not require integrated

markets. For example, it can arise when households cannot trade with each other, H∩F = ∅,

and the markets are intermediated, as long as households in each country have access to a set

of assets that is sufficiently rich to span the risks that affect both of their marginal utilities.
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Figure 4: The cyclicality-volatility tradeoff with a large globally-traded component

Data

CMvart(m
∗
t+1 −mt+1)

vart(gt+1)

Cyclicality
covt(∆st+1,m

∗
t+1 −mt+1)

Variance
vart(∆st+1)

The red ray depicts all possible volatility-cyclicality combinations when globally-traded shocks span house-
hold marginal utility (IMRS) and vart(gt+1) = vart(m

∗
t+1 −mt+1), as in equation (28). The blue 45◦ line

segment corresponds to the case when the exchange rate is spanned by globally-traded shocks, as in equa-
tion (29). The red cone corresponds to condition (26) for a high value of vart(gt+1), but away from the two
limiting cases. See notes to Figures 2 and 3.

By Proposition 4, condition (27) applies in this case and yields

vart(∆st+1) ≥ vart(m
∗
t+1 −mt+1) = covt(∆st+1,m

∗
t+1 −mt+1). (28)

The volatility of the relative IMRS puts a lower bound on the volatility and pins down the

cyclicality of the exchange rate. Hence, this setting deepens the volatility puzzle and leaves

the cyclicality puzzle unchanged relative to complete markets. In Figure 4, the vertical red

ray emanating upwards from the CM point represents the volatility-cyclicality tradeoff in

this situation.

A testable implication of the spanned IMRS assumption is that a regression of the ex-

change rate depreciation ∆st+1 on the relative IMRS m∗t+1 −mt+1 yields a coefficient of 1,

while the reverse regression yields a coefficient (weakly) less than 1.

Spanned exchange rate The other limiting case arises when the exchange rate risk is

globally-traded, vart(gt+1) = vart(∆st+1). This immediately applies when markets are in-

tegrated but not necessarily complete, and full market integration is not necessary. For

example, it is sufficient for households in both countries to have access to the two risk-free
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bonds as in Lustig and Verdelhan (2019). This case can also arise under intermediated

markets when the depreciation shock is spanned by globally-traded risks.

The implication of condition (26) in Proposition 4 in this case is:

covt(∆st+1,m
∗
t+1 −mt+1) = vart(∆st+1) = vart(gt+1). (29)

The constraint on the volatility of the exchange rate is weaker, because g can be less volatile

than the relative IMRS m∗ −m. However, just like in the complete and integrated markets

case, there is a cyclicality puzzle. This constraint on the cyclicality and volatility of the

depreciation rate corresponds to the blue 45-degree line segment between the origin and the

complete markets point in Figure 4. Each point on this segment corresponds to the vertex

of a cone for a given value of vart(gt+1).24

A testable implication of the spanned exchange rate assumption is that a regression of

the relative IMRS m∗t+1 −mt+1 on the exchange rate depreciation ∆st+1 yields a coefficient

of 1, while the reverse regression yields a coefficient (weakly) less than 1. This implication

is symmetric to the one in the spanned IMRS case.

Large globally-traded component The two cases above indicate that the exchange rate

continues to be tightly constrained by the properties of the household IMRSs as long as there

is only a single departure from either market completeness or market integration. When we

modify who can trade assets by allowing for imperfect market integration or intermediation,

as long as the available set of assets is rich, we end up in the spanned IMRS scenario. When

we limit which assets can be traded while still ensuring market integration for these assets, we

find ourselves in the spanned exchange rate scenario. Both situations yield tight constraints

on the possible properties of the exchange rate, captured by the respective line segments in

Figure 4 and away from the Data point.

Therefore, relaxing the constraints on the behavior of the exchange rate requires departing

from both market completeness and market integration at once. This is necessary, but not

sufficient. Even intermediated incomplete markets can feature exchange rate puzzles when

24In this case, constraints imposed by other traded assets create a lower bound on vart(gt+1). This restricts
the set of feasible exchange rate moments to the sub-segment of the blue line above this value.
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the set of traded assets in each county is sufficiently broad to get close to span the relative

IMRS m∗−m. This situation corresponds to a large value of vart(gt+1)/vart(m
∗
t+1−mt+1),

albeit less than 1. This is the dark red cone in Figure 4 that is tight around the red vertical

ray. In other words, the constraints on the properties of the exchange rate are continuous

in the value of vart(gt+1), and are only sufficiently relaxed when vart(gt+1) is small, as we

study next.

3.4 Market structures without currency puzzles

The complementary implication of Proposition 4 is that market structures with a small

globally-traded component can accommodate various exchange rate dynamics without en-

countering currency puzzles. Specifically, when vart(gt+1) = 0, all combinations of volatility

and cyclicality are feasible. This situation arises in popular intermediation-based models of

exchange rate which assume extreme segmentation and no globally-traded risks. We demon-

strate that this can be significantly relaxed: intermediated market structures can allow

meaningful risk sharing while vart(gt+1) remains low enough to accommodate the empirical

properties of the exchange rate.

No globally-traded risks In many intermediation-based models of exchange rate, house-

holds in each country have access to the local risk-free asset only. Intermediaries trade both

of these assets and bear the currency risk. Because neither H nor F contain risky assets,

there are no globally-traded risks, and hence gt+1 = 0. All combinations of cyclicality and

volatility in the white cone in Figure 2 are compatible with risk-sharing conditions.

One can then ask whether an equilibrium model can generate these combinations of

volatility and cyclicality, in particular the Data point. Appendix E answers positively: there

exist foundations rationalizing any point in the cone as the equilibrium of an intermediation-

based model with exchange rate shocks arising in the currency market as a result of shifts

in currency demand or intermediation capacity.

More formally, start from an arbitrary point in the cone defining the volatility and co-

movement of the exchange rate with a given relative SDF m∗ −m. Select a series of shocks

ut+1 that exhibit this volatility and cyclicality. We then construct a series of primitive sources
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of fluctuation in the currency market — e.g., exogenous liquidity demand for currency or

intermediary risk-bearing capacity — such that the equilibrium exchange rate features these

conjectured innovations, ∆̃st+1 = ut+1. We rely on the fact that the intermediary clears the

currency market and hence prices the exchange rate risk. As a result, shocks affecting the

demand and supply curves in the currency market pass through to the equilibrium exchange

rate. In the absence of vehicles for household risk sharing, m and m∗ do not impose any

additional constraints.

The extreme form of market segmentation assumed in such models might not be appeal-

ing. In practice, households trade more than one asset and intermediaries participate in more

than one market. We ask whether one can consider additional markets in the intermediated

setup without losing the empirical flexibility afforded by extreme segmentation — that is,

keeping vart(gt+1) = 0.

Two such dimensions are particularly helpful in moving towards a more realistic market

structure. First, because the trading opportunities of intermediaries do not affect the set

of the globally-traded shocks, these intermediaries can be as sophisticated and active in as

many markets as one wants. Formally, one can enrich arbitrarily set I and price all assets

in this set with mI without affecting the risk-sharing restrictions on the exchange rate that

are shaped by the sets H ∩ I and F ∩ I.

Second, households can trade rich sets of their respective local assets as long as their

returns are not related enough to create globally-traded shocks. Formally, the sets H∩I and

F ∩ I may include a rich set of local assets such as equities and bonds provided that the set

of globally-traded risks εεεg = r̃rrp ∩ r̃rr∗p remains empty. In this case, local financial markets still

impose no risk-sharing restrictions on the exchange rate, affording the same full flexibility

to the intermediation model of the currency market.

Small globally-traded component When the set of local assets is sufficiently rich, there

may be commonly-traded shocks across countries. Then, the globally-traded component

becomes significant, vart(gt+1) > 0; risk-sharing imposes constraints on the exchange rate.

This does not necessarily introduce the puzzles. If vart(gt+1) is low enough, as for example

in the light red cone in Figure 3, the Data point is still feasible.
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The upper bound on the volatility of the globally-traded component such that the cor-

responding red cone contains the Data point is (see Appendix C.3):

vart(gt+1)

vart(∆st+1)
≤

vart(m
∗
t+1 −mt+1)/vart(∆st+1)

1 + vart(m∗t+1 −mt+1)/vart(∆st+1)
. (30)

This relation highlights an important nuance in how such models can address the puz-

zles. International risk sharing must be sufficiently weak in the sense that vart(gt+1) �

vart(m
∗
t+1 − mt+1), but it can still contribute substantially to exchange rate variation,

vart(gt+1)/vart(∆st+1) � 0. To see this, notice that under our maintained assumption

of a volatility puzzle in complete markets, that is vart(∆st+1) � vart(m
∗
t+1 − mt+1), the

right-hand-side of (30) converges to 1.25

Just like in the case of vart(gt+1) = 0, any combination of volatility and cyclicality in the

relevant feasibility cone — now any red cone in Figure 3 — can be reached in equilibrium

(see Appendix E). In this case, the two roles of financial markets coexist. Because (rrr, rrr∗) is

richer, risk sharing now determines a non-trivial globally-traded component of the exchange

rate gt+1, which corresponds to the vertex of the red cone. One can then apply the same

reasoning as in the unconstrained case to the variance of ∆st+1−gt+1 and its covariance with

m∗t+1 − mt+1 − gt+1 to find shocks in the currency market that reach any point in the red

cone. These shocks add to the volatility of the exchange rate above the base level var(gt+1).

If the additional source of variation in the exchange rate is designed to comove with the

relative IMRS, cyclicality of the exchange rate is also altered, allowing to move towards the

Data point. The lower is vart(gt+1)/vart(∆st+1), the lower is the required comovement.26

Market structures with intermediation and many locally traded assets may be particularly

appealing. They help overcome the limitations that arise in models that consider each role

of the financial market in isolation. Specifically, they allow to avoid both the over-reliance

of exchange rate dynamics on macroeconomic factors via international risk sharing and the

excessive segmentation in market participation for households and intermediaries.

25Using the same values as in footnote 21 and assuming conservatively a high correlation of the two IMRSs
of 0.9, we obtain an upper bound for vart(gt+1)/vart(∆st+1) ≤ 0.83.

26Note that the comovement between ∆st+1− gt+1 and m∗t+1−mt+1− gt+1 may be due to either the `t+1

or ut+1 component of the exchange rate.

33



3.5 The currency risk premium

We turn to the properties of the currency risk premium, guided by Proposition 2. This

proposition indicates a sharp delineation between market structures regarding the currency

risk premium, and hence the constraints on the expected depreciation Et∆st+1. On the one

hand, if the exchange rate is spanned by asset returns, ut+1 = 0, expected depreciation is

given by equation (15). Because this expression is close to equation (23), the currency risk

premium puzzle arises in such market structures as well. On the other hand, if the exchange

rate is not spanned by asset returns, expected depreciation can deviate arbitrarily from this

tight risk-sharing relation.

When does spanning occur in the market structures discussed above? In integrated

markets, as in the blue line in Figure 4, the exchange rate is a globally-traded risk. Because

globally-traded shocks are constructed from asset returns, the exchange rate is fully spanned.

Therefore, these structures, which already wrestle with the volatility and cyclicality puzzles

also face the risk premium puzzle.

In market structures with less risk sharing, like those of Sections 3.4, the exchange rate

may or may not be spanned. For example, lack of spanning occurs naturally if local asset

returns, such as those of stocks and bonds, are not affected by currency-market shocks that

transmit to the exchange rate. Interestingly, the equilibrium model in Appendix E, which

is able to reach any point in a given red cone in Figure 3, generically features unspanned

exchange rates. Therefore, Proposition 2 implies an unconstrained risk premium for this

class of models with Et∆st+1 determined by forces other than international risk sharing.

If we further impose an upper bound on Sharpe ratios, Proposition 3 applies, and risk

premium variations cannot be too large relative to exchange rate innovations, constrain-

ing the possible range of values of Et∆st+1. In equilibrium models, expected deprecia-

tion and exchange rate shocks are additionally constrained by transversality-type condi-

tions. For example, in some models, the exchange rate is stationary and innovations in

the exchange rate ∆̃st+1 must be offset by long-term changes in future expected deprecia-

tions (Et+1 − Et)[∆st+j+1].27 The models of Appendix E have an equilibrium reaching any

27When the exchange rate is not long-run mean reverting, fundamental shocks in goods and financial
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point in the red cone that also satisfy Proposition 3. Still, Proposition 3 restricts some

properties of the exchange rate: it requires that the equilibrium features sufficiently small

but persistent innovations to the currency risk premium in order to sustain the unspanned

exchange rate shocks.

4 Empirical Analysis

We now turn to the data on asset returns and exchange rates to evaluate the implied re-

strictions on equilibrium SDFs. Our theoretical results show that restrictions between the

exchange rate and SDFs depend on the assumed market structure, and that this question

cannot be answered with asset return data alone. In particular, given the data on returns,

one needs to take a stand on who can trade what assets, that is the sets H, F , and I.28

For some market structures, return data is not necessary to characterize the restrictions.

For example, when markets are complete, risk sharing implies that the relative household

IMRS must equal the observed exchange rate depreciation. Or, in the other extreme of

segmented markets, when households only trade their own risk-free asset, there are no re-

strictions on shocks to household IMRSs from observed asset returns and the exchange rate.

Therefore, for the purposes of this section, we focus on a market structure where data on

asset returns and exchange rates plays a meaningful role in characterizing the implied risk-

sharing constraints on the local SDFs. Specifically, we consider the case of intermediated

markets in which households of each country trade a broad collection of local bonds and

equities, as in Section 3.4. In this market structure, spanning of the exchange rate by

asset returns and globally-traded risks cannot be taken as given and needs to be evaluated

empirically by combining the data on asset returns with the assumptions about H and F .

We find that, through the lens of this market structure, exchange rates appear to have a

large component ut+1 unspanned by asset returns. Then, we provide methods to characterize

markets can cause shifts in the long-run exchange rate expectations, s̄∞t ≡ limj→∞Etst+j , resulting in
∆s̄∞t+1 6= 0. Then the general intertemporal restrictions on the exchange rate shocks and expected deprecia-
tions can be written as (∆st+1−Et∆st+1) + (Et+1−Et)

[∑∞
j=1 ∆st+j+1

]
= ∆s̄∞t+1, where s̄∞t is determined

in the full equilibrium of the model.
28Appendix G also shows that one has to take a stand on market structure for an economic interpretation

of the SDFs recovered from return data.
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globally-traded shocks. We find that these shocks explain a modest share of exchange rate

fluctuations. Taken together, these empirical results suggest that, under this assumed market

structure, international risk-sharing restrictions are relatively weak and therefore a wide

range of household IMRSs is compatible with empirical exchange rate dynamics.

4.1 Data

We consider countries corresponding to G10 currencies between 2/1988 and 12/2022. We

consider Germany as the representative country for the euro. Prior to the introduction of

the euro, we use the Deutsche mark and splice these series together beginning in 1999. Our

analysis focuses on the monthly frequency. We obtain exchange rates from WM/Reuters.

Government bond yields are from each country’s central bank website. Monthly bond returns

are computed from bond yields using a second-order Taylor approximation. We obtain equity

indices from Morgan Stanley Capital International (MSCI). For each country, 10 different

industry indices and 3 different style equity indices (Large + Mid Cap, Value, Growth) are

sourced. Risk-free rates are approximated by dividing the 1-year yield by 12.

4.2 Is the exchange rate spanned?

Motivated by Proposition 2, we ask whether the depreciation rate is spanned by combi-

nation of domestic and foreign asset returns. We estimate regressions that implement the

construction of the maximum spanning portfolio in (10) as follows:

∆st+1 = α + β′rrrt+1 + β∗′rrr∗t+1 + ut+1, (31)

where rrrt+1 and rrr∗t+1 represent asset returns available to home and foreign investors in their

respective currencies.29 Specifically in the case of the assumed market structure, U.S. equities

and bond returns are expressed in U.S. dollars, while foreign equities and bond returns are

expressed in the currency of that country. The residual ut+1 is a direct estimate of the

unspanned component of the depreciation rate in equation (9).

29We implement these regressions unconditionally for the whole sample at monthly frequency. Alterna-
tively, spanning could be evaluated in sub-samples or at longer horizons.
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Table 1: Spanning of depreciation rates by asset returns: R2

Dependent Variable AU CA DE JP NO NZ SE CH UK

Bonds

10Y 0.3 0.3 7.5 5.4 4.7 1.1 4.8 4.0 0.9

All Maturities 7.2 7.9 15.7 10.2 13.7 5.7 14.0 11.5 13.7

Stocks

Mkt 21.7 26.6 7.0 4.4 11.2 16.6 16.2 12.3 12.7

Mkt + Value/Growth 21.6 28.0 6.8 5.1 12.5 17.2 15.9 12.7 13.7

Mkt + Value/Growth + Ind. 35.1 41.6 18.6 22.8 29.4 24.5 24.0 19.6 26.9

Bond + Equity 36.7 45.1 26.8 29.1 36.6 28.0 30.6 25.3 33.8

N 419 395 419 419 406 419 414 419 419

The table reports the adjusted R2 of a regression of the depreciation rate on various subsets of asset returns,
as in equation (31). Domestic asset returns are in domestic currency; foreign asset returns are in foreign
currency. Each column is a different country’s currency relative to the U.S. dollar. The first row uses only
10-year bonds, while the second entertains maturities between 2 and 10 years, obtained from various central
banks. The next three row consider various stock portfolios: the market (a combination of large and mid-cap
stocks), plus value and growth portfolios, plus 10 industry portfolios (all from MSCI). The final row considers
all assets simultaneously.

Table 1 reports the adjusted R2 from these regressions for individual countries vis-à-vis

the United States. Each row reflects a particular combination of assets used in the regression:

we consider bonds and equities separately and in combination. Exact spanning corresponds

to an R2 of 1, and Proposition 3 highlights that this R2 is an appropriate measure of economic

distance to the case of complete spanning.30

Our key finding is that these major asset classes do not span the exchange rate. When

looking at all assets together, the R2s range from 25% for Switzerland to 45% for Canada

(in each case vis-à-vis the U.S.). Consistent with the evidence in Chernov and Creal (2023),

bond returns explain only a modest amount of variation in exchange rates: between 0.2%

and 7% for the 10-year bond alone, and between 7% and 14% for the combination of bonds at

all maturities. Most of the explanatory power comes from equities. While the market alone

gets to a substantial amount of variation, the addition of industry returns is particularly

informative.

30Campbell, Serfaty-De Medeiros, and Viceira (2010) focus on currency hedging of equity and bond port-
folios, so they essentially implement reverse regressions with a focus on the sign and significance of the
associated betas. The documented insignificant betas for bond portfolios are suggestive of low R2.
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The economic magnitude of the unspanned component var(ut+1) is substantial. Accord-

ing to Proposition 3, even the largest R2 we measure implies a bound for the expected

depreciation that is only
√

1− 0.45 ≈ 0.74 of the bound with R2 = 0, not much tighter.

We conclude that, under the intermediated market structure we consider, the expected de-

preciation rate is weakly constrained by the relative local SDFs m and m∗. Conversely, the

observed path of Et∆st+1 and the currency risk premium can be consistent with a wide range

of conventional household IMRSs.

4.3 Identifying globally-traded shocks

We quantify the importance of globally-traded shocks εεεgt+1, which play the key role in Propo-

sition 1. We follow an undirected approach and use canonical correlation analysis (CCA) to

identify these shocks from the asset return data. In Appendix F, we also consider a directed

approach starting from candidates for globally-traded shocks proposed in the literature, such

as global macro and financial variables. The results in that setting are qualitatively similar.

According to Definition 1, globally-traded shocks are innovations to portfolios of asset

returns consisting of rrrt+1 and rrr∗t+1, respectively, with perfect correlation. The CCA proce-

dure constructs US and foreign portfolios with the highest correlation possible in sample.

Conditional on finding this pair, the procedure then looks for the next maximally correlated

pair of portfolios that are orthogonal to their first pair. And so on. See Appendix B for

details.

The values of the largest correlations range from 64% for New Zealand to 90% for Canada.

The detailed results are reported in Appendix Table A1. We are generous with interpreting

the evidence, and assume that portfolios with a correlation over 60% are sufficiently close to

each other to constitute a measure of a globally-traded shock.

We ask how much variation in the depreciation rate is explained by globally-traded

shocks. Denote the matrix of foreign portfolio weights by www∗ so that www∗′rrr∗t+1 is our basis of

globally-traded risks εεεgt+1. We implement regressions of the form:

∆st+1 = α + βg′(www∗′rrr∗t+1) + εt+1. (32)
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Figure 5: Decomposition of exchange rate innovations
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The figure reports the fraction of variance in exchange rates explained by globally-traded and locally-traded
shocks, and shocks that are not spanned by asset returns, under the assumption of an intermediated market
structure. Each bar is a different country’s currency relative to the U.S. dollar; globally-traded shocks are
measured using CCA for stock and sovereign bond returns.

The R2 of such a regression is the fraction of variance in exchange rate explained by the

globally-traded component, var(gt+1)/var(∆st+1). The regression residual is a direct esti-

mate of the contribution of locally-traded and unspanned shocks to the depreciation rate,

εt+1 = `t+1 + ut+1.

Combining with the results of regression (31), we can decompose variation in the depre-

ciation rate into the contribution of globally-traded, locally-traded, and unspanned shocks.

Specifically, we have var(βg′(www∗′rrr∗t+1)) for globally-traded shocks, and var(εt+1)− var(ut+1)

for locally-traded shocks, where ut+1 was obtained at the previous step from regression (31).

Figure 5 reports these quantities as fraction of the variation in depreciation rate; the contri-

butions mechanically add up to 1.

For all currencies, at least half of the variation in exchange rates is unspanned by asset

returns. Globally-traded risks contribute up to 25% to variation in the depreciation rates

(e.g., Australia and Canada), and frequently much less. These estimates should be seen as

an upper bound on the role of globally-traded risks; remember that we include any pair of

portfolios with correlation above 60%, far from the strict Definition 1.
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In light of Proposition 4, the relatively modest role of globally-traded shocks var(gt+1)

in this intermediated market structure implies weak restrictions between exchange rate risks

and IMRSs. In particular, models of this kind are capable of resolving the cyclicality and

volatility puzzles, as illustrated in Figure 3 with the lower red cone.

5 Conclusion

In this paper, we propose a general framework for understanding how financial markets de-

termine the behavior of exchange rates. Our theory accommodates many settings: complete

or incomplete markets, arbitrary forms of market integration, or situations in which interna-

tional financial trade happens through intermediaries. We characterize all restrictions on the

behavior of exchange rates due to the absence of international arbitrage. These restrictions

can be summarized by two conditions that share the simplicity of the complete market result

while having richer implications.

We use these results to study many different market structures, which leads to new

insights on the interaction of financial markets and the exchange rate. First, we show

that the puzzles arising in settings with complete and integrated markets are still present

when markets are either incomplete or imperfectly integrated. Second, we demonstrate that

financial markets can be a source of shocks to the exchange rate without the extreme market

segmentation featured in standard models emphasizing this mechanism. Finally, we show

that the two roles of financial markets, facilitating risk sharing and transmitting shocks,

are not mutually exclusive and both can play an important role in shaping exchange rate

dynamics and avoid the currency puzzles. These results highlight that departing from the

polar cases of market structure and incorporating realistic features of how financial markets

are organized is a promising avenue for understanding the exchange rate.
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Online Appendix

A Portfolio algebra

A.1 Portfolio approximation

To maintain tractability, we follow Campbell and Viceira (2002) and approximate the log portfolio
excess returns relative to a risk-free rate rft:

rp,t+1 − rft = log
(
www′t exp(rrrt+1 − rft)

)
≈ www′t(rrrt+1 − rft) +

1

2
www′t diag(ΣΣΣt)−

1

2
www′tΣΣΣtwwwt, (A1)

where ΣΣΣt is the N ×N variance-covariance matrix of log returns and wwwt is the vector of portfolio
weights such that www′tιιι =

∑N
i=1wit = 1. Note that by convention we use the vector notation where,

for example, www′t exp(rrrt+1 − rft) =
∑N

i=1witRi,t+1/Rft and Ri,t+1/Rft = exp(ri,t+1 − rft).
The approximation in (A1) allows us to represent portfolios returns as linear combination of

log returns. Importantly, it is stable by recombination, leading to the same result when applied
in two steps or all at once for a portfolio of portfolios. The approximation becomes exact as time
becomes continuous and the underlying data-generating process for returns converges to a purely
diffusive stochastic process.

A.2 Two international portfolios

Two international portfolios are useful for the derivation of our main results.

Carry trade. One zero-cost portfolio, often referred to as carry, entails taking long and short
positions in related assets:

Rcarry,t+1 = Rt+1 −R∗t+1 · St+1/St, (A2)

where Rt+1 and R∗t+1 denote asset returns in levels and St denotes the level of the exchange rate.

Traditionally, traded assets are taken to be domestic and foreign risk-free (one-period) bonds.
But carry does not have to be limited to that. For instance, Lustig, Stathopolous, and Verdelhan
(2019) consider long-term bonds. More generally, one could use any pair of assets, e.g. risky assets
that are close to each other with corrt(rt+1, r

∗
t+1) ≈ 1. The key characteristic of the carry trade is

that it exposes the arbitrageur to currency risk.

Lemma 2. The conversion from foreign to home returns in the carry portfolio introduces exposure
to currency risk, r̃carry,t+1 = r̃t+1 − r̃∗t+1 − ∆̃st+1.

Proof. To apply the log approximation in equation (A1), we convert the zero-cost portfolio
(A2) to a funded portfolio by adding a unit position in the risk-free asset:

Rp,t+1 ≡ Rcarry,t+1 +Rf,t = Rt+1 −R∗t+1 · St+1/St +Rf,t.

The portfolio Rp,t+1 corresponds to the weights w1 = 1 in the domestic risky asset Rt+1, w2 = −1
in the foreign risky asset converted to local currency, R∗t+1 · St+1/St, and w3 = 1 in the domestic
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risk-free asset with wwwt = (w1, w2, w3)′. These weights lead to an expression for the log gross return
relative to the risk-free rate Rp,t+1/Rf,t:

rcarry,t+1 ≡ rp,t+1 − rft
= rt+1 − r∗t+1 −∆st+1 + covt(rt+1 − r∗t+1 −∆st+1, r

∗
t+1 + ∆st+1). (A3)

This confirms the claim in Lemma 2 about the carry return innovation r̃carry,t+1 as the covariance
term is part of the expected return at time t. �

Thus, we conclude that the carry portfolio return is exposed to the exchange rate risk. Note
that in the special case of carry based on risk-free assets, rcarry,t+1 = rft−r∗ft−∆st+1−vart(∆st+1),

and thus r̃carry,t+1 = −∆̃st+1, that is the carry risk equals the negative of the exchange rate risk.
This property holds for any carry with risky assets such that r̃t+1 = r̃∗t+1.

Differential carry. The fact that carry is exposed to currency risk prompts us to consider
another zero-cost portfolio, labeled as differential carry, which is long one unit of the domestic
asset, and short one unit of the foreign asset, financed at the respective risk-free rates:

Rdiff,t+1 = (Rt+1 −Rft)− (R∗t+1 −R∗ft) · St+1/St. (A4)

Intuitively, this portfolio does not introduce additional currency exposure because, in contrast to
carry, only the foreign excess return is converted to the home currency. We demonstrate this
formally in the following lemma.

Lemma 3. The conversion from foreign- to home-currency returns in the differential carry does
not introduce additional exposure to currency risk, r̃diff,t+1 = r̃t+1 − r̃∗t+1.

Proof. To apply the log approximation in equation (A1), we convert the zero-cost portfolio
(A4) to a funded portfolio by adding a unit position in the risk-free asset:

Rp,t+1 ≡ Rdiff,t+1 +Rf,t = Rt+1 − (R∗t+1 −R∗ft) · St+1/St.

The portfolio Rp,t+1 corresponds to the weights w1 = 1 in the domestic risky asset Rt+1, w2 = −1
in the foreign risky asset converted to local currency, R∗t+1 · St+1/St, and w3 = 1 in the foreign
risk-free asset converted to local currency, R∗ft · St+1/St, with wwwt = (w1, w2, w3)′. These weights
lead to an expression for the relative log return:

rdiff,t+1 ≡ rp,t+1 − rft
= (rt+1 − rft)− (r∗t+1 − r∗ft) + covt(r

∗
t+1, rt+1 − r∗t+1 −∆st+1). (A5)

Thus, only the covariance of the foreign return with the exchange rate has a material impact on
portfolio performance, not the shocks to the exchange rate. �

The disappearance of exchange rate risk for the differential carry return is in part due to our
portfolio approximation. In Appendix Section H, we confirm that this approximation is very tight
empirically. We compare the excess returns on various stock portfolios and sovereign bonds in their
origin currency, R∗t+1−R∗ft, and after conversion to home currency (USD), (R∗t+1−R∗ft)St+1/St. The
correlation between the two monthly series is always around 99.9%. Also, see Daniel, Hodrick, and
Lu (2017, Online Appendix C) and Chernov, Dahlquist, and Lochstoer (2023, Internet Appendix
II). Appendix D derives exact versions of our results which do not rely on the portfolio return
approximation in (A1).
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B Globally-traded shocks

We first provide a technical construction of globally-traded shocks. To see specific examples of
globally-traded shocks in various market structure, skip to Appendix B.2.

B.1 Identification and construction

We show how to identify a basis for the set of globally-traded shocks εεεgt+1 from the base returns
rrrt+1 and rrr∗t+1. We drop time indices and tildes for parsimony.

First, recall what canonical correlation analysis does.

Definition 2. Canonical correlation analysis identifies pairs (λλλi,λλλ
∗
i ) for i = 1, ..,K for some K

such that:

1. ∀i var(λλλ′irrr) 6= 0;

2. ∀i λλλ′irrr = λλλ∗′i rrr
∗;

3. ∀i 6= j λλλ′irrr ⊥ λλλ′jrrr;

4. ∀r ∈ span(rrr),∀r∗ ∈ span(rrr∗): if ∀i r ⊥ λλλ′irrr and r∗ ⊥ λλλ∗′i rrr∗, then r 6= r∗.

Condition 1 says that each canonical component is non-degenerate, that is, has non-zero vari-
ance. Condition 2 says that each component can be expressed using only local returns and only
foreign returns. Condition 3 indicates that the various components must be orthogonal to each
other. Condition 4 indicates that the analysis exhausts all possible components: one cannot find
pairs of portfolios satisfying condition 2 in the space orthogonal to the canonical components.

We show that this procedure identifies a basis of εεεg.

Lemma 4. The collection (λλλ′1rrr, ..,λλλ
′
Krrr) identified by canonical correlation analysis is a basis of εεεg.

Proof. By Definition 1 and by point 2 of Definition 2, all λλλ′irrr are in εεεg. Thus, span(λλλ′1rrr, ..,λλλ
′
Krrr) ⊂

εεεg.

Let us show the other direction. Assume that ∃r ∈ εεεg such that r /∈ span(λλλ′1rrr, ..,λλλ
′
Krrr). We can

orthogonalize r to all the λλλ′irrr and obtain r̂. Because r̂ is a linear combination of r and λλλ′irrr which are
all in εεεg, it is also in εεεg, and therefore in span(rrr) and span(rrr∗). By substituting r̂ for both r and r∗

in point 4 of Definition 2, we immediately obtain a contradiction. Therefore, span(λλλ′1rrr, ..,λλλ
′
Krrr) ⊃

εεεg, and the two sets are equal. By point 3 of Definition 2, dim(span(λ′1r, . . . λ
′
Kr)) = K, so

(λ′1r, . . . λ
′
Kr) is indeed a basis of εεεg. �

Furthermore, we relate the dimension of εεεg to the rank of covariance matrices of rrr, rrr∗, and the
two combined.

Lemma 5. The dimension of εεεg is:

dim(εεεg) = rank(var(rrr)) + rank(var(rrr∗))− rank(var(rrr,rrr∗)).

Proof. Observe that, by construction,

dim(span(rrr,rrr∗)) = dim(span(εεεg)) + dim(span(εεε))︸ ︷︷ ︸
=dim(span(rrr))

+ dim(span(εεε∗))︸ ︷︷ ︸
=dim(span(rrr∗))−dim(εεεg)

.
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Therefore,

dim(εεεg) = dim(span(rrr)) + dim(span(rrr∗))− dim(span(rrr,rrr∗)),

which yields the result. �

B.2 Examples of globally-traded, locally-traded and unspanned
risks

B.2.1 Alternative market structures with bonds and equities

Consider a world with four assets:
1. a home risk-free bond with return rft in home currency;

2. a foreign risk-free bond with return r∗ft in foreign currency;

3. a home equity index with return rH,t+1 in home currency;

4. a foreign equity index with return r∗F,t+1 in home currency,

and a nominal exchange rate depreciation rate ∆st+1.

We consider a variety of international market structures with various subsets of these assets,
assumingthat an international intermediary can trade all of them so that:

rrrIt+1 = (rft, r
∗
ft + ∆st+1, rH,t+1, r

∗
F,t+1 + ∆st+1). (A6)

Case 1 Consider the non-integrated market where H contains the home bond and home equity
index, while F contains the foreign bond and foreign equity index. In this case the sets of return
in H ∩ I and F ∩ I in local currency are respectively given by:

rrrt+1 = (rft, rH,t+1) and rrr∗t+1 = (r∗ft, r
∗
F,t+1).

By Definition 1, assuming the two equity indexes do not have perfectly correlated returns in their
respective currencies, |corrt(rH,t+1, r

∗
F,t+1)| < 1, the set of globally-traded shocks in this case is

empty, εεεgt+1 = ∅. Otherwise, there exists λ 6= 0 such that r̃H,t+1 = λr̃∗F,t+1, and thus εεεgt+1 =
r̃H,t+1 = λr̃∗F,t+1. This may be the case when both rH,t+1 and r∗F,t+1 are driven by the same
fundamental shock (e.g., relative productivity). Note importantly that these are returns expressed

in different currencies. If ∆̃st+1 = δrH,t+1, then the exchange rate is spanned by the globally-traded

shock, ∆̃st+1 ∈ εεεgt+1; otherwise, it is not.31

Case 2 Now allow both households to trade both risk-free bonds so that:

rrrt+1 = (rft, r
∗
ft + ∆st+1, rH,t+1) and rrr∗t+1 = (r∗ft, rft −∆st+1, r

∗
F,t+1).

In this case, independently of the statistical properties of the equity returns (rH,t+1, r
∗
F,t+1), the

exchange rate is a globally-traded risk, ∆̃st+1 ∈ εεεgt+1. Therefore, ∆̃st+1 = gt+1 and ut+1 = `t+1 = 0
according to decomposition (9). This is because both households can trade the exchange rate risk.

31If @λ : r̃H,t+1 6= λr̃∗F,t+1 and ∆̃st+1 is spanned by (r̃H,t+1, r̃
∗
F,t+1), then ∆̃st+1 = `t+1 is a locally-traded

shock.
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If, additionally, the exchange rate is spanned by (rH,t+1, r
∗
F,t+1), then εεεgt+1 =

(∆̃st+1, r̃H,t+1, r̃
∗
F,t+1) irrespective of the correlation between rH,t+1 and r∗F,t+1. This is because

using r∗ft + ∆st+1 and rH,t+1, the home households can construct a portfolio that spans r∗F,t+1,
making it a globally-traded risk; and symmetrically for rH,t+1. This situation arises naturally when
rH,t+1 reflects home productivity, r∗F,t+1 reflects foreign productivity, and ∆st+1 in proportional to
relative productivity. However, the presence of additional shocks may disrupt such spanning.

Case 3 Consider now that both households can trade every asset such that

rrrt+1 = (rft, r
∗
ft + ∆st+1, rH,t+1, r

∗
F,t+1 + ∆st+1), (A7)

rrr∗t+1 = (r∗ft, rft −∆st+1, r
∗
F,t+1, rH,t+1 −∆st+1). (A8)

This is the case of a fully integrated market. According to Definition 1, such a case always features
a full set of globally-traded shocks εεεgt+1 = (∆̃st+1, r̃H,t+1, r̃

∗
F,t+1) irrespective of statistical properties

of the returns. This is because excess returns for every asset are a globally traded. Therefore, fully
integrated markets imply ∆̃st+1 = gt+1 and ut+1 = `t+1 = 0 according to decomposition (9).

Case 4 Consider now three asymmetric partially integrated scenarios. In all of these cases, the
foreign household only trades the foreign bond and the foreign equity index, rrr∗t+1 = (r∗ft, r

∗
F,t+1).

(i) The home household trades both bonds and the home equity, rrrt+1 = (rft, r
∗
ft+∆st+1, rH,t+1).

In this case, assuming r∗F,t+1 is not spanned by (∆st+1, rH,t+1), there are no globally-traded
shocks, εεεgt+1 = ∅. However, the exchange rate is spanned by local returns, as the home

household has an access to a carry trade with risk-free bonds, and thus ∆̃st+1 = `t+1 and
ut+1 = gt+1 = 0 according to decomposition (9).

(ii) The home household trades the home bond and both equity indexes, rrrt+1 =
(rft, rH,t+1, r

∗
F,t+1 + ∆st+1). Similarly, assuming r∗F,t+1 is not spanned by (∆st+1, rH,t+1),

there are no globally-traded shocks, εεεgt+1 = ∅. This case is more interesting, however, because
the same risky asset (the foreign equity index) is traded by both households. Nonetheless,
there are still no globally-traded risks as r∗F,t+1 is not traded in local currency, but instead
is converted to home currency using the exchange rate, which itself is not a globally-traded
risk. Furthermore, the exchange rate is not spanned in this case even for the home household
as they do not have access to a carry trade with risk-free bonds. However, it is spanned
by the joint set of asset returns rrrIt+1 = (rrrt+1, rrr

∗
t+1), and therefore it is a locally-traded risk,

∆̃st+1 = `t+1 and gt+1 = ut+1 = 0 according to decomposition (9).

(iii) The home households can trade all asset as in (A7). Assuming |corrt(rH,t+1, r
∗
F,t+1)| < 1,

the set of globally-traded shocks in this case is εεεgt+1 = r̃F,t+1. The home households can
trade the exchange rate risk using the carry trade as in (i), making it a locally-traded risk

(∆̃st+1 = gt+1 + `t+1 and ut+1 = 0), and hence they can also trade the r∗F,t+1 risk in home
currency by combining the foreign equity and the carry trade.

Note that any partial integration makes the exchange rate risk locally traded, but generally not
globally-traded without both risk-free bonds being globally-traded, as we illustrate further in the
next case.
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Case 5 Finally, we consider the case of a symmetrically partially integrated markets where each
household can hold both equities, but not the bond of the other country:

rrrt+1 = (rft, rH,t+1, r
∗
F,t+1 + ∆st+1) and rrr∗t+1 = (r∗ft, r

∗
F,t+1, rH,t+1 −∆st+1).

Irrespective, of the statistical properties of the risky returns, r̃H,t+1 − r̃∗F,t+1 −∆st+1 ∈ εεεgt+1. Fur-
thermore, if (rH,t+1, r

∗
F,t+1,∆st+1) has statistically a full rank (i.e., there is no linear dependence

between these random variables), then εεεgt+1 = (r̃H,t+1 − r̃F,t+1 − ∆s∗t+1), and the exchange rate
is not spanned by globally-traded shocks. However, it is locally-traded due to partial integration
with risky assets. That is: ∆̃st+1 = gt+1 + `t+1 and ut+1 = 0 according to decomposition (9). This
is because each household can construct a carry trade using the two risky assets, and the return
on this carry trade is the globally-traded shock (see Appendix A). No other random variable is
spanned by both rrrt+1 and rrr∗t+1. By induction, the presence of n risky assets traded in common
by home and foreign households will introduce n− 1 globally-traded risks (excess returns), but in
general do not make the exchange rate a globally-traded risk. This contrasts with the cases 2 and
3, where the exchange rate risk was immediately globally traded due to a carry trade strategy with
two risk-free bonds.

B.2.2 Partial integration: a commonly traded asset

Consider an asset i with return Ri,t+1 in home currency and corresponding return R∗i,t+1 =

Ri,t+1
St
St+1

after conversion to foreign currency. The corresponding log returns are ri,t+1 = logRi,t+1

and r∗i,t+1 = ri,t+1 −∆st+1. Therefore, when Ri,t+1 is available to the home household and R∗i,t+1

is available to the foreign household (that is, i ∈ H ∩ F ), then a simple one-asset pair of portfo-
lios rp,t+1 = ri,t+1 and r∗p,t+1 = r∗i,t+1 spans the exchange: ∆st+1 = rp,t+1 − r∗p,t+1 and, therefore,

ut+1 = 0 in equation (10).32

If asset i is the only asset traded in common (that is, {i} = H ∩ F ), then there is no globally-

traded risk (assuming ∆̃st+1 6= 0), that is εεεgt+1 = ∅ and gt+1 = 0 in equation (9). Indeed, in this
case, the only risk that can be spanned in H is r̃i,t+1, and the only risk that can be spanned in F

is r̃i,t+1 − ∆̃st+1 6= r̃i,t+1.

Traded excess return Consider now a traded excess return Ri,t+1−Rj,t+1 on a zero-cost port-
folio, with the foreign currency excess return given by R∗i,t+1−R∗j,t+1 = (Ri,t+1−Rj,t+1)St/St+1.33

Following the same steps as in the proof of Lemma 3 in Appendix A.2, one can show that the risk
of the log excess return is given by r̃i,t+1 − r̃j,t+1 in the home currency and by r̃∗i,t+1 − r̃∗j,t+1 =

(r̃i,t+1 − ∆̃st+1) − (r̃j,t+1 − ∆̃st+1) = r̃i,t+1 − r̃j,t+1 in the foreign currency. Therefore, unlike a
traded asset, a traded excess return is a globally-traded risk.

32Note that it is of no significance whether asset i is the same stock traded by both households or there are
two assets with identical returns (in a common currency) traded separately in the home and foreign markets
(e.g., as might be the case with ADRs or stocks like Royal Dutch Shell), as long as there is an intermediary
with access to both assets in the latter case.

33One example of such return can be a commodity forward. In general, the return is defined as Ri,t+1 =
(Pi,t+1 + Di,t+1)/Pit, where P is the price of the asset and D is the dividend. Then the pay-out on a
commodity forward is given by the following excess return: Ri,t+1 − Rj,t+1 = Pi,t+1 − Pj,t+1, where Pit =
Pjt = 1, Di,t+1 = Dj,t+1 = 0, and Pi,t+1 is the realized spot commodity price next period and Pj,t+1 = Fit

is the forward commodity price.

50



One way to construct an excess return for a traded asset i is to subtract a risk-free rate,
Rj,t+1 = Rft. However, to obtain a globally-traded risk, the risk-free rate should be in the same
currency in both markets, so that R∗j,t+1 = RftSt/St+1. The same works with a risk-free rate in
foreign currency, in which case Rj,t+1 = R∗ftSt+1/St and R∗j,t+1 = R∗ft. In the former case, the

globally-traded risk is r̃i,t+1, and in the latter it is r̃i,t+1 − ∆̃st+1. Note that this requires that a
risk-free bond (either in one or the other currency) is also traded by both households, in addition
to risky asset i.

B.2.3 Globally-traded risks vs. common risks

It may be intuitively appealing to think about sources of common variation in domestic and foreign
assets as globally-traded shocks. There is a critical difference between such intuition and the formal
definition of globally-traded shocks, which requires replication of the exposure to such shock solely
using assets of either country.

As an example, consider economies with N risky assets each, with all of these assets having
exposure to a shock εt+1: r̃i,t+1 = αiεt+1 + βiεi,t+1, and r̃∗i,t+1 = α∗i εt+1, and εt+1 and all the εi,t+1

are orthogonal to each other. If βi = 0 for at least one domestic asset i, then εt+1 is a globally-
traded shock. If none of the βi are equal to zero, then εt+1 is not a globally-traded shock because
it cannot be isolated from r̃rrt+1. It is only when N →∞ than one can construct a portfolio of r̃i,t+1

to isolate εt+1 via diversification.

C Derivation of the main results

C.1 Proof of propositions in Section 2

Proof of Proposition 1 Consider one of the globally-traded shocks, εgt+1. By definition 1,
there exist two portfolios rp,t+1 ∈ rrrp,t+1 and r∗p,t+1 ∈ rrr∗p,t+1 such that εgt+1 = r̃p,t+1 = r̃∗p,t+1.

The differential carry portfolio of Lemma 3 is in rrrIp,t+1. In this case, the portfolio has no risk
because r̃p,t+1 = r̃∗p,t+1. The shocks to foreign and domestic return perfectly offset each other. By
assumption 2, the portfolio must have expected returns equal to the risk-free rate. That is:

0 = Et[rp,t+1 − rft]− Et[r∗p,t+1 − r∗ft]− covt(r∗p,t+1,∆st+1) + covt(r
∗
p,t+1, rp,t+1 − r∗p,t+1).

The last term is equal to 0 because rp,t+1 − r∗p,t+1 has no risk. We can replace the first two terms
by covariances with the SDFs using the domestic and foreign Euler equations (5) and (6),

0 = −covt(mt+1, rp,t+1)− 1

2
vart(rp,t+1) + covt(m

∗
t+1, r

∗
p,t+1) +

1

2
vart(r

∗
p,t+1)

− covt(r∗p,t+1,∆st+1).

Remembering that both portfolio shocks are equal to εgt+1, this expression simplifies to:

covt(m
∗
t+1 −mt+1 −∆st+1, ε

g
t+1) = 0.

This equation is equivalent to

cov(m̃∗t+1 − m̃t+1 − ∆̃st+1, ε
g
t+1) = 0,
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which implies equation (11). Furthermore, under log-normality, this condition is equivalent to the

equality of respective conditional expectation, E
(
m̃∗t+1 − m̃t+1|εgt+1

)
= E

(
∆̃st+1|εgt+1

)
.

Because this result holds for any globally-traded shock, it must also hold in terms of multivariate
projections on all globally-traded shocks εεεgt+1. �

Proposition 1 without risk-free assets The differential carry portfolio from Lemma 3
that we use in the proof of Proposition 1 relies on the availability of both risk-free rates in the
intermediaries set of returns rIt+1. Proposition 1 generalizes to environments without risk-free
assets. A globally-traded risk requires the existence of a jointly spanned excess return in H ∩ I
and F ∩ I in respective local currencies. In our baseline setting, we obtained excess returns by
subtracting the respective local risk-free rates from a given spanned return, forming a leg of the
differential carry portfolio. More generally, we need to focus on excess returns of zero-cost portfolios
which we denote with rz,t+1 and r∗z,t+1, respectively. By analogy with the definition of rrrp,t+1, we
have:

rrrz,t+1 =
{
rz,t+1 = log

(
www′t exp(rrrt+1)

) ∣∣ ∃wwwt ∈ RN : www′tιιι = 0
}
. (A9)

Then a globally-traded shock is defined as εεεgt+1 ≡ r̃rrz,t+1 ∩ r̃rr∗z,t+1, where formally r̃rrz,t+1 is the set
of all spanned risks of zero-cost portfolios r̃z,t+1. Proposition 1 then holds under this generalized
definition of globally-traded shocks εεεgt+1. Note that in the presence of risk-free assets, this definition
coincides with Definition 1. In the absence of risk-free assets, we need to find a pair of assets in
each set H ∩I and F ∩I that have a perfectly correlated excess return in respective local currencies
(see examples in Appendix B.2).

Proof of Proposition 2 Consider the carry portfolio of Lemma 2 constructed with a pair of
portfolios rp,t+1 ∈ rrrp,t+1 and r∗p,t+1 ∈ rrr∗p,t+1 which span the exchange rate (equation (10)). In this

case, the portfolio has no risk because r̃p,t+1 − r̃∗p,t+1 = ∆̃st+1. The shocks to foreign and domestic
return perfectly offset exchange rate risk. By assumption 2, the portfolio must have expected
returns equal to the risk-free rate. This corresponds to

0 = Et[rp,t+1 − r∗p,t+1 −∆st+1] + covt(rp,t+1 − r∗p,t+1 −∆st+1, r
∗
p,t+1 + ∆st+1).

The covariance term is equal to 0, because rp,t+1 = r∗p,t+1 − ∆st+1 has no risk. We can replace
expected returns using the domestic and foreign Euler equations (5) and (6):

Et∆st+1 = rft − covt(mt+1, rp,t+1)− 1

2
vart(rp,t+1)

− r∗ft + covt(m
∗
t+1, r

∗
p,t+1) +

1

2
vart(r

∗
p,t+1) = δt.

We replace r̃p,t+1 = r̃∗p,t+1 + ∆̃st+1:

Et∆st+1 = rft − r∗ft − covt(mt+1,∆st+1) + covt(m
∗
t+1 −mt+1, r

∗
p,t+1)

+
1

2
vart(r

∗
p,t+1)− 1

2
vart(∆st+1)− 1

2
vart(r

∗
p,t+1)− covt(∆st+1, r

∗
p,t+1)

= rft − r∗ft − covt(mt+1,∆st+1)− 1

2
vart(∆st+1)

+ covt(m
∗
t+1 −mt+1 −∆st+1, r

∗
p,t+1).
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This proves part b) of Proposition 2. If markets are fully integrated, all asset returns are
globally-traded shocks, and proposition 1 implies that the last term in the equation above is equal
to 0, part a) of the proposition. If the exchange rate is not spanned by asset returns, it is impossible
to construct a trade with expected returns involving the expected depreciation rate that is risk-free.
Therefore, no-arbitrage imposes no restriction on the expected depreciation rate. �

Proposition 2 without risk-free assets Note that no step in the proof requires the existence
of risk-free assets, as the carry trade in Lemma 2 builds on a pair of arbitrary portfolios rp,t+1 ∈
rrrp,t+1 and r∗p,t+1 ∈ rrr∗p,t+1 that spans the exchange rate risk. The rates rft and r∗ft in the definition
of δt in (10) (and in asset pricing equations (5) and (6)) can in general be replaced by shadow
risk-free rates defined as rft ≡ −Etmt+1 − 1

2vart(mt+1) and similarly for r∗ft, even when risk-free
assets are not available.

One situation must be handled separately: when the replicating portfolio features r̃p,t+1 =

∆̃st+1 and hence r̃∗p,t+1 = 0 when r∗p,t+1 = r∗ft is unavailable (or, symmetrically, without rft). Note,

however, that rp,t+1 with r̃p,t+1 = ∆̃st+1 is equivalent to a foreign-currency risk-free asset traded
by the domestic household, and therefore we can use this asset to define a shadow foreign risk-free
rate: rp,t+1 = r∗ft + ∆st+1, where r∗ft can be backed out using the home household’s asset pricing
condition (5):

r∗ft + Et∆st+1 ≡ Et rp,t+1 = rft −
1

2
vart(∆st+1)− covt(mt+1,∆st+1),

which coincides with the prediction of Proposition 2. Note that, again, in the absence of risk-free
assets, rft and r∗ft are shadow rates. The contrast with the general case is that in this case both of
them are defined by the properties of domestic SDF mt+1.

Proof of Proposition 3 Recall our decomposition of the depreciation rate into spanned and
unspanned components, ∆st+1 = Et∆st+1 + gt+1 + `t+1 + ut+1. Because gt+1 + `t+1 is spanned by
asset returns, there exists rp,t+1 ∈ rrrp,t+1 and r∗p,t+1 ∈ rrr∗p,t+1 such that r̃p,t+1 − r̃∗p,t+1 = gt+1 + `t+1.
Using Lemma 2, we see that the risk of this portfolio is equal to vart(ut+1). We apply Assumption
3 to relate this risk to the expected return of the carry trade.∣∣∣Et[rp,t+1 − r∗p,t+1 −∆st+1] + covt(rp,t+1 − r∗p,t+1 −∆st+1, r

∗
p,t+1 + ∆st+1) +

1

2
vart(ut+1)

∣∣∣
≤ B

√
vart(ut+1).

Examining the terms in the left-hand-side, we have:

Et[rp,t+1 − r∗p,t+1 −∆st+1] = δt − Et[∆st+1] = −ψt,
covt(rp,t+1 − r∗p,t+1 −∆st+1, r

∗
p,t+1 + ∆st+1) = cov(−ut+1, r̃p,t+1 + ut+1)

= −var(ut+1),

where the last equality uses the fact that ut+1 ⊥ (εεεgt+1, εεεt+1, εεε
∗
t+1) 3 r̃p,t+1. Plugging these two

results on the left-hand side of the inequality above, we obtain:∣∣∣ψt +
1

2
vart(ut+1)

∣∣∣ ≤ B√vart(ut+1).
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Finally, by construction, the pair of portfolios (rp,t+1, r
∗
p,t+1), maximizes R2 = 1 −

vart(∆st+1−rp,t+1+r∗p,t+1)

vart(∆st+1) = 1− vart(ut+1)
vart(∆st+1) , and hence vart(ut+1) = (1−R2)vart(∆st+1). �

C.2 Propositions 1 and 2 are sufficient for no-arbitrage

We show that the results of Propositions 1 and 2 are not only necessary for the absence of interna-
tional arbitrage — Assumption 2 — but also sufficient. Specifically we show the following.

Proposition 5. If:

1. Assumption 1 holds,

2. E
(
m̃∗t+1 − m̃t+1|εgt+1

)
= E

(
∆̃st+1|εgt+1

)
,

3. (a) either ∃rsp,t+1 ∈ rrrp,t+1, r
s∗
p,t+1 ∈ rrr∗p,t+1 such that ∆̃st+1 = r̃sp,t+1 − r̃s∗p,t+1 and

Et∆st+1 = rft − r∗ft − covt(m∗t+1,∆st+1) +
1

2
vart(∆st+1)

+ covt
(
m∗t+1 −mt+1 −∆st+1, rp,t+1

)
,

(b) or ∀rsp,t+1 ∈ rrrp,t+1, r
s∗
p,t+1 ∈ rrr∗p,t+1, ∆̃st+1 6= r̃sp,t+1 − r̃s∗p,t+1,

then there are no arbitrage opportunities in international markets, that is Assumption 2 holds.

Proof : We proceed by contradiction. Assume that there exists an international arbitrage:

∃rIp,t+1 ∈ rrrIp,t+1 : vart(r
I
p,t+1) = 0 and Etr

I
p,t+1 6= rft,

and denote www and www∗ the set of weights of such a portfolio on rrrt+1 and rrr∗t+1 + ∆st+1. Remember
that ιιι′Nwww + ιιι′N∗www∗ = 1. We consider the cases of 3a and 3b in turn.

Assume condition 3a holds. As a preliminary, note that this condition is equivalent to saying
that a carry portfolio constructed with rsp,t+1 and rs∗p,t+1 has no risk and no average excess return.

Consider the following portfolio: long www′rrrt+1, long (ιιι′N∗www∗) rsp,t+1, long www∗′
(
rrr∗t+1 + ∆st+1

)
, short

(ιιι′N∗www∗) (rs∗p,t+1 + ∆st+1). Because we have added and subtracted the same total weights, the new
weights still add up to 1, so this is still a portfolio. Because this portfolio combines two risk-free
portfolios — our assumed arbitrage and the risk-free carry trade — its expected return is the
sum of the two expected returns, that is Et r

I
p,t+1. The total weight on foreign returns in the

portfolio are ιιι′N∗www∗ − ιιι′N∗www∗ = 0. Therefore, this trade is a differential carry portfolio (defined in
Appendix A.2). Because it has no risk, its home and foreign legs offset each other. They form a
globally-traded shock. Applying condition 1 in the proposition and Lemma 3 leads immediately to
the result that the portfolio return must equal the risk-free rate. This contradicts the assumption
that Et r

I
p,t+1 6= rft.

Now assume that condition 3b holds. If ιιι′N∗www∗ 6= 0, then the arbitrage portfolio has a non-zero
loading on ∆st+1 in addition to the home and foreign returns. Because the portofolio is riskless
this implies that we can find a pair of home and foreign returns that spans the depreciation rate,
a contradiction of condition 3b. If ιιι′N∗www∗ = 0, then the two legs of the portfolio in their home
currency perfeclty offset each other. Their innovations constitute a globally-traded shock and
applying condition 1 in the proposition jointly with Lemma 3 implies that the arbitrage portfolio
has 0 expected return, a contradiction as well. �
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C.3 Proofs of the results of Section 3

Proof of Proposition 4 Apply the Cauchy-Schwarz inequalty to ∆̃st+1 − gt+1 and (m̃∗t+1 −
m̃t+1)− gt+1:

covt(∆̃st+1 − gt+1, (m̃
∗
t+1 − m̃t+1)− gt+1)2

≤ vart(∆̃st+1 − gt+1)vart((m̃
∗
t+1 − m̃t+1)− gt+1). (A10)

Proposition 1 implies that both ∆̃st+1 − gt+1 and (m̃∗t+1 − m̃t+1) − gt+1 are orthogonal to gt+1.
Therefore:

vart(∆̃st+1 − gt+1) = vart(∆st+1)− vart(gt+1)

vart((m̃
∗
t+1 − m̃t+1)− gt+1) = vart(m

∗
t+1 −mt+1)− vart(gt+1)

covt(∆̃st+1 − gt+1, (m̃
∗
t+1 − m̃t+1)− gt+1) = covt(∆st+1,m

∗
t+1 −mt+1)− vart(gt+1)

When vart((m̃
∗
t+1−m̃t+1)−gt+1) > 0, plugging in and rearranging the terms in equation (A10) gives

equation (26). When vart((m̃
∗
t+1−m̃t+1)−gt+1) = 0, we get vart(gt+1) = covt(∆st+1,m

∗
t+1−mt+1),

with the first term being no greater than vart(∆st+1) by definition of gt+1, yielding (27). �

Maximum vart(gt+1) without puzzles We ask what is the largest value of vart(gt+1) so that
the Data point falls within the red cone in Figure 3. This is the value such that the frontier of the
cone reaches exactly that point. The parabola is defined by taking condition (26) with equality.
The Data point is characterized by the empirical value of vart(∆st+1) and cyclicality 0. Plugging
in, this corresponds to solving:

vart(∆st+1) = vart(gt+1) +
vart(gt+1)2

vart(m∗t+1 −mt+1)− vart(gt+1)
(A11)

Dividing by vart(∆st+1) gives:

1 =
vart(gt+1)

vart(∆st+1)
+

(
vart(gt+1)

vart(∆st+1)

)2

/

(
vart(m

∗
t+1 −mt+1)

vart(∆st+1)
− vart(gt+1)

vart(∆st+1)

)
1− vart(gt+1)

vart(∆st+1)(
vart(gt+1)
vart(∆st+1)

)2 = 1/

(
vart(m

∗
t+1 −mt+1)

vart(∆st+1)
− vart(gt+1)

vart(∆st+1)

)
(

vart(gt+1)
vart(∆st+1)

)2

1− vart(gt+1)
vart(∆st+1)

=
vart(m

∗
t+1 −mt+1)

vart(∆st+1)
− vart(gt+1)

vart(∆st+1)

vart(gt+1)
vart(∆st+1)

1− vart(gt+1)
vart(∆st+1)

=
vart(m

∗
t+1 −mt+1)

vart(∆st+1)
.

Because x/(1− x) = a⇔ x = a/(1 + a), this gives:

vart(gt+1)

vart(∆st+1)
=

vart(m∗
t+1−mt+1)

vart(∆st+1)

1 +
vart(m∗

t+1−mt+1)

vart(∆st+1)

. (A12)
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Notice that the deeper the volatility puzzle in complete markets, that is, the larger the value of
vart(m

∗
t+1 −mt+1)/vart(∆st+1) is, the larger the possible contribution of globally-traded risks to

the exchange rate vart(gt+1)/vart(∆st+1).

D Exact non-linear version of the propositions

Our proofs rely on returns being log-normal and a log-linearization of portfolio returns as described
in Appendix A.1. In this section we address the question of how the propositions change without
distributional assumption and approximation.

D.1 A version of Proposition 1

Consider two portfolios, domestic with returns Rp,t+1 and foreign with returns R∗p,t+1 such that
their innovations coincide with one of the globally-traded shocks, that is, they can be represented
as Rp,t+1 = αt +R∗p,t+1. The local Euler equations imply:

Et(Mt+1Rp,t+1) = 1,

Et(M
∗
t+1R

∗
p,t+1) = 1.

The local Euler equations can be re-written as

Et(Rp,t+1) = Rft − covt
(

Mt+1

Et(Mt+1)
, Rp,t+1

)
(A13)

Et(R
∗
p,t+1) = R∗ft − covt

(
M∗t+1

Et(M∗t+1)
, R∗p,t+1

)
. (A14)

Now consider an intermediary whose SDF expressed in the units of domestic currency, M I
t+1,

satisfies the following Euler equations:

Et(M
I
t+1Rft) = 1, (A15)

Et(M
I
t+1R

∗
ftSt+1/St) = 1, (A16)

Et(M
I
t+1(Rp,t+1 −Rft)) = 0, (A17)

Et(M
I
t+1(R∗p,t+1 −R∗ft)St+1/St) = 0. (A18)

The intermediary trades the zero-cost differential carry portfolio:

0 = Et
(
M I
t+1

[
(Rp,t+1 −Rft)− (R∗p,t+1 −R∗ft) · St+1/St

])
= Et

(
M I
t+1

[
(Rp,t+1 −Rft)− (Rp,t+1 − αt −R∗ft) · St+1/St

])
= Et

(
M I
t+1

[
(Rp,t+1 −Rft)(1− St+1/St) + (αt +R∗ft −Rft) · St+1/St

])
.

Replace the risk-free rates by the expressions from the local Euler equations (A13) and (A14),
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divide the equation by Et(M
I
t+1), and define

covIt

(
St+1

St
, R∗p,t+1

)
≡ Et

(
M I
t+1

Et(M I
t+1)

(R∗p,t+1 −R∗ft)
St+1

St

)

− Et

(
M I
t+1

Et(M I
t+1)

(R∗p,t+1 −R∗ft)

)
︸ ︷︷ ︸

0

·Et

(
M I
t+1

Et(M I
t+1)

St+1

St

)
,

EIt

(
St+1

St

)
≡ Et

(
M I
t+1

Et(M I
t+1)

St+1

St

)
=
Rft
R∗ft

.

Then

0 = −covIt
(

St+1/St

EIt (St+1/St)
, R∗p,t+1

)
+ covt

(
M∗t+1

Et(M∗t+1)
− Mt+1

Et(Mt+1)
, R∗p,t+1

)
.

(We replace Rp,t+1 with R∗p,t+1 in the covIt term because of our assumption about Rp,t+1 and R∗p,t+1.)

This expression implies

covt

(
M∗t+1

Et(M∗t+1)
− Mt+1

Et(Mt+1)
− St+1/St
Et(St+1/St)

, R∗p,t+1

)
= covIt

(
St+1/St

EIt (St+1/St)
, R∗p,t+1

)
− covt

(
St+1/St

Et(St+1/St)
, R∗p,t+1

)
︸ ︷︷ ︸

W

(A19)

As we noted in section A.1, the log approximation that we use in Proposition 1 becomes exact
if time is continuous and the data-generating process converges to a pure diffusion. Under such
scenario, the covariance in the equation above is observable, and, thus, has the same value with and
without risk adjustment (via M I

t+1). As a result, W = 0. Also, each Arrow-Debreu claim makes
the corresponding state globally-traded. For such a globally-traded risk W = 0.

Further, the projection result depends on the knowledge of intermediary’s SDF, M I
t+1 via the

term with covIt . The log approximation relies only on the existence of such SDF, due to Assumption
2, and allows us to be agnostic about its actual values.

The first term in the second line is equal to R∗ft · QRPt, where QRPt is the quanto-implied
risk premium of Kremens and Martin (2019). Its role in our paper is different from that of these
authors. They use it to approximate the currency risk premium assigned by the intermediary,
R∗ftEt(St+1/St)−Rft = −Rftcovt(M I

t+1, R
∗
ft · St+1/St). Here it measures the gap in projections of

the relative discount factor and the depreciation rate on globally-traded risks.

D.2 A version of Proposition 2

Consider two portfolios, domestic with returns Rp,t+1 and foreign with returns R∗p,t+1 such that their
innovations span the exchange rate, that is, they can be represented as Rp,t+1 = αt+R

∗
p,t+1St+1/St.

The local Euler equations (A13) and (A14) hold for these portfolios. Also, we consider a (domes-
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tically funded) intermediary whose SDF, M I
t+1, satisfies the following Euler equations:

Et(M
I
t+1Rp,t+1) = 1,

Et(M
I
t+1R

∗
p,t+1St+1/St) = 1.

First, we show that αt = 0. The intermediary can form a zero-cost carry portfolio:

0 = Et
(
M I
t+1

[
Rp,t+1 −R∗p,t+1St+1/St

])
= αtEt

(
M I
t+1

)
.

Therefore, the expected return of the carry portfolio is equal to zero:

0 = Et
(
Rp,t+1 −R∗p,t+1St+1/St

)
= Rft − covt

(
Mt+1

Et(Mt+1)
, Rp,t+1

)
− Et(R∗p,t+1)Et(St+1/St)− covt(R∗p,t+1, St+1/St)

= Rft − covt
(

Mt+1

Et(Mt+1)
, Rp,t+1

)
− covt(R∗p,t+1, St+1/St)

−
[
R∗ft − covt

(
M∗t+1

Et(M∗t+1)
, R∗p,t+1

)]
Et(St+1/St),

where we substituted the local Euler equations (A13) and (A14) in lines 2 and 5, respectively. This
equation implies the currency risk premium:

R∗ftEt

(
St+1

St

)
−Rft = −covt

(
Mt+1

Et(Mt+1)
, R∗p,t+1

St+1

St

)
+ covt

(
M∗t+1

Et(M∗t+1)
, R∗p,t+1

)
Et

(
St+1

St

)
− covt

(
R∗p,t+1,

St+1

St

)
= −R∗ftcovt

(
Mt+1

Et(Mt+1)
,
St+1

St

)
− covt

(
Mt+1

Et(Mt+1)
, [R∗p,t+1 −R∗ft]

St+1

St

)
+ covt

(
M∗t+1

Et(M∗t+1)
Et

(
St+1

St

)
− St+1

St
, R∗p,t+1

)
= −Rftcovt

(
Mt+1, R

∗
ft

St+1

St

)
︸ ︷︷ ︸

complete markets

+ covt

(
M∗t+1

Et(M∗t+1)
− Mt+1

Et(Mt+1)
− St+1/St
Et(St+1/St)

, R∗p,t+1

)
Et

(
St+1

St

)
︸ ︷︷ ︸

A

− covt
(

Mt+1

Et(Mt+1)
, [R∗p,t+1 −R∗ft]

[
St+1

St
− Et

(
St+1

St

)])
︸ ︷︷ ︸

B

,

where in the first line we take advantage of spanning and replace Rp,t+1 with R∗p,t+1St+1/St; the
third line is obtained from the first by adding and subtracting the leading term in line 3; the fourth
line is obtained by combining the two terms in the second line; the 6th and 7th lines are obtained
by adding and subtracting covt(Mt+1/Et(Mt+1), R∗p,t+1).
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The term B in the seventh line is the domestic household’s risk premium for quanto exposure
and disappears in the log-normal approximation. Also, B = 0 if R∗p,t+1 happens to be R∗ft, that is,
domestic household can trade foreign risk-free bond. The term A in the sixth line is equal to zero
in this case as well.

Next, if financial markets are integrated then the innovation to R∗p,t+1 is a globally-traded shock.
Then, equation (A19) from the non-linear version of Proposition 1 implies that

A = W · Et(St+1/St).

As is the case for Proposition 1, the log approximation treats this term as close to zero.

It might appear that the departure from log-normality in the case of integrated markets leads
to two extra terms, A and B. In fact, when markets are integrated A − B can be simplified to a
term with a single source of departures from zero. Indeed, we obtain

A−B
Et(St+1/St)

= covIt

(
St+1/St

EIt (St+1/St)
, R∗p,t+1

)
− covt

(
St+1/St

Et(St+1/St)
, R∗p,t+1

)
− covt

(
Mt+1

Et(Mt+1)
− 1, [R∗p,t+1 −R∗ft]

[
St+1/St

Et(St+1/St)
− 1

])
= Et

(
M I
t+1

Et(M I
t+1)

[R∗p,t+1 −R∗ft]
[

St+1/St
Et(St+1/St)

− 1

])

− Et
(

Mt+1

Et(Mt+1)
[R∗p,t+1 −R∗ft]

[
St+1/St

Et(St+1/St)
− 1

])
.

Thus, A − B is close to zero when the intermediary prices the globally-traded (quanto) risk the
same way as the domestic household.

If there is no spanning, Rp,t+1 6= αt + R∗p,t+1St+1/St, then it is impossible to find a risk-free
strategy and derive restrictions on the currency risk premium.

E An Example of a Financial Sector

In this section, we study exchange rate dynamics within a complete specification of the financial
sector. The goal of this analysis is two-fold. First, it illustrates the second role of financial markets
as a conduit of shocks to the exchange rate. Second, we show that this second role complements
the risk-sharing role: there exists a foundation for what happens in international financial markets
that can justify any exchange rate process satisfying Propositions 1 and 2.

E.1 Setting

We maintain Assumption 1 about local financial markets. That is, the two fixed sets of returns
rrrt+1 and rrr∗t+1 are priced by the household discount factors mt+1 and m∗t+1. Then, we posit the
remainder of international markets in such a way that Assumption 2 is satisifed.

First, we assume that there are noise traders with exogenous demand, Dnoise
t , for the carry

trade. That is, each period, they go long Dnoise
t of the home currency in the foreign risk-free asset

and go short the same amount in the domestic risk-free asset.

59



Second, we assume that, there are overlaping generations of intermediaries in the market. Each
period, an intermediary enters the market with wealth W0,t and lives until the next period. The
intermediary maximizes their utility of next period wealth,

Et

(
1

1− γt
W 1−γt

1,t+1

)
.

The coefficient of relative risk aversion γt can be viewed as a stand-in for various frictions limiting
the risk-bearing capacity of the intermediary (see Haddad and Muir, 2021 for a discussion of this
interpretation). The intermediary has access to all assets in I, and takes these assets’ returns as
given in their optimization problem. We denote by DI

t the optimal position of the intermediary in
the carry trade.

The presence of these intermediaries guarantees that Assumption 2 is satisfied: if there were
an arbitrage opportunity, the intermediary would choose an infinitely large position in the corre-
sponding portfolio, which would be incompatible with it being an equilibrium.

Third, we include a market-clearing condition for the carry trade. Positions of noise traders and
intermediaries must offset the imbalance of positions between households, that is, the net foreign
assets NFAt:

Dnoise
t +DI

t +NFAt = 0. (A20)

Taking the household SDFs as given is equivalent to assuming that the assets are provided perfectly
elastically to the intermediary. This explains why we do not need market-clearing conditions for
assets other than the carry trade nor specification of the demand from noise traders for these assets.

All these relations hold period by period and characterize changes in exchange rate ∆st+1. We
need an additional restriction at infinite horizon to close the model and determine the asymptotic
level of the exchange rate, and hence its current level st. We focus on a generic form of such
a restriction originating from the combination of the budget constraint and the transversality
condition:

∆st+1 − Et∆st+1 + (Et+1 − Et)

 ∞∑
j=1

βj∆st+j+1

 = Nx,t+1, (A21)

where β < 1 is a linearization constant and Nx,t+1 ≡ (Et+1 − Et)
[∑∞

j=0 β
j∆xt+j+1

]
is a present

value of innovations to ∆xt, a change in some real quantity xt (for example, relative TFP across
countries). By definition, Nx,t+1 is unpredictable. Appendix E.3 derives the restriction (A21) from
the budget constraint.

An alternative approach to the asymptotic behavior of the exchange rate which some researchers
have used is to impose stationarity of the exchange rate. This case is encompassed in equation (A21)
by assuming Nx,t+1 = 0 for all t and taking the limiting case of β → 1, which implies

0 = (Et+1 − Et)

 ∞∑
j=0

∆st+j+1

 = (Et+1 − Et)
[

lim
j→∞

st+j − st
]
,

that is limj→∞Etst+j = s̄ for all t, with s̄ a constant.
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E.2 Which exchange rate processes can be rationalized by finan-
cial shocks?

Because this model respects Assumptions 1 and 2, any equilibrium exchange rate process must
satisfy Propositions 1 and 2. We now show the converse: there exist values for the inputs of the
model — noise trader demand, intermediary risk aversion — that justify any exchange rate process
satisfying the two propositions.

Proposition 6. For any sequence of shocks {ζt} such that:

1. proj(ζt+1|εgt+1) = proj
(
m∗t+1 −mt+1|εgt+1

)
, and

2. ζt+1 is not fully spanned by asset returns,

there exist processes for noise trader demand {Dnoise
t } and intermediary risk aversion {γt} such

that an equilibrium exchange rate shock satisfies:

∆̃st+1 = ζt+1 ∀t. (A22)

We prove this result in three steps. First, because of condition 2 in Proposition 6, Proposition 2
does not impose any restrictions on the expected depreciation Et∆st+1 at any t. Yet, it has to satisfy
the infinite-horizon restriction (A21). Thus, we derive a process for ηt ≡ Et∆st+1 which satisfies this
restriction at infinity in order to complete the candidate exchange process from equation (A22).34

Second, we derive the intermediary demand DI
t as a function of the characteristics of the exchange

rate process. Finally, we clear the market.

Candidate depreciation rate satisfying equation (A21). We guess that exchange rate
dynamics have the following structure:

∆st+1 = ηt + ζt+1, (A23)

ηt+1 = ρηt + θ(ζt+1 −Nx,t+1), (A24)

where 0 ≤ ρ < 1 and θ are two fixed parameters to be chosen.

Iterating forward the auto-regressive dynamics of ηt gives the innovation

(Et+1 − Et)[ηt+j ] = ρj−1θ[ζt+1 −Nx,t+1].

We can then compute the present value of these innovations:

(Et+1 − Et)

 ∞∑
j=1

βjηt+j

 =

∞∑
j=1

βjρj−1θ[ζt+1 −Nx,t+1]

= βθ
1

1− βρ
[ζt+1 −Nx,t+1].

34Note that given the definition of δt in equation (14), we can recover the wedge in equation (17) as
ψt = ηt − δt.
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The restriction at infinite horizon of equation (A21) is satisfied if:

βθ

1− βρ
= −1 ⇔ θ = −1− βρ

β
,

which pins down θ as a function of ρ.

The parameter ρ is free, and controls the persistence of expected depreciation shocks. As
β and ρ approach 1, this exchange rate process converges to a random walk, and therefore it
becomes difficult to distinguish it from a random walk in finite samples (Itskhoki and Mukhin,
2021). Choosing a value of ρ close to 1 will therefore generate empirically realistic dynamics.35

Intermediary demand. We derive the optimal portfolio choice of the intermediary. We apply
the Campbell and Viceira (2002) approximation, summarized in Appendix A.1, for this portfolio
problem. The approximation reduces to the intermediary optimization problem:

max
rp,t+1∈rrrIp,t+1

Et(rp,t+1) +
1

2
(1− γt)vart(rp,t+1) (A25)

We represent returns rrrIp,t+1 by the risk-free asset and a basis rrrbt+1 with mean Et(rrr
b
t+1), and covariance

matrix Σb,t. Then the optimal vector of portfolio weights on the risky assets wwwt is:

wwwt =
1

γt
Σ−1
b,t

(
Et(rrr

b
t+1)− rf,t+1ιιι+ diag(Σb,t)/2

)
(A26)

We construct a basis of all asset returns and the carry trade. First, we can represent both the
domestic and foreign asset spaces using assets that load on the locally-traded and globally-traded
shocks. For the home country, returns on such assets are:{

rf,t + εεεgt+1 − covt(mt+1, εεε
g
t+1)− vart(εεεgt+1)/2,

rf,t + εεεt+1 − covt(mt+1, εεεt+1)− vart(εεεt+1)/2,
(A27)

using the log-normal Euler equation (5). For the foreign country, we similarly have:{
r∗f,t + εεεgt+1 − covt(m∗t+1, εεε

g
t+1)− vart(εεεgt+1)/2,

r∗f,t + εεε∗t+1 − covt(m∗t+1, εεε
∗
t+1)− vart(εεε∗t+1)/2,

(A28)

using the Euler equation (6). We convert the corresponding excess returns to the home currency
by using the differential carry portfolio of Lemma 3 (with the home risk-free rate constituting the
domestic leg of the trade). This gives the home currency returns:{

rf,t + εεεgt+1 − covt(m∗t+1 −∆st+1, εεε
g
t+1)− vart(εεεgt+1)/2

rf,t + εεε∗t+1 − covt(m∗t+1 −∆st+1, εεε
∗
t+1)− vart(εεε∗t+1)/2.

(A29)

35Furthermore, in this limit, var(ηt+1)/var(ζt+1) → 0 so Proposition 3 is generally satisfied as well for
large values of ρ.
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We combine these returns with the home assets and the carry portfolio based on risk free assets to
obtain all international asset returns. This gives the basis:

rf,t + εεεgt+1 − covt(mt+1, εεε
g
t+1)− vart(εεεgt+1)/2

rf,t + εεεt+1 − covt(mt+1, εεεt+1)− vart(εεεt+1)/2

rf,t + εεεgt+1 − covt(m∗t+1 −∆st+1, εεε
g
t+1)− vart(εεεgt+1)/2

rf,t + εεε∗t+1 − covt(m∗t+1 −∆st+1, εεε
∗
t+1)− vart(εεε∗t+1)/2

rf,t + (rf,t − r∗f,t)− vart(∆st+1)−∆st+1.

(A30)

Two sets of assets are exposed to the globally-traded shocks εgt+1: the first and third line in (A30).
The first assumption of Proposition 6 ensures that they are exactly equivalent: covt(mt+1, εεε

g
t+1) =

covt(m
∗
t+1−∆st+1, εεε

g
t+1). Because they are redundant, we can eliminate one of the two. The second

assumption of Proposition 6 ensures that the carry trade is not spanned by all other asset returns.

Applying the optimal portfolio formula of equation (A26), we obtain the portfolio weight on
the carry trade:

wcarry,t =
UIPt −

(
βββg′t covt(mt+1, εεε

g
t+1) + βββ′tcovt(mt+1, εεεt+1) + βββ∗′t covt(m

∗
t+1 − ζt+1, εεε

∗
t+1)

)
γtvart(ut+1)

, (A31)

where UIPt ≡ (rf,t − r∗f,t) −
1
2vart(∆st+1) − Et∆st+1 = (rf,t − r∗f,t) −

1
2vart(∆ζt+1) − ηt (with ηt

defined in equation (A24)) and the coefficients βββg, βββ, and βββ∗ as well as the shock ut+1 come from
regressing the exchange rate on globally-traded and locally-traded shocks,

ζt+1 = βββg′εεεgt+1 + βββ′εεεt+1 + βββ∗′εεε∗t+1 + ut+1. (A32)

Intuitively, the numerator and denominator of equation (A31) correspond to the expected return
and variance of a portfolio with a unit exposure to the carry trade hedged as much as possible
using the other traded assets. Notice also that except γt, all the terms in equation (A31) can be
constructed from the properties of m, m∗, asset returns (through εεεg, εεε, and εεε∗), and ζt+1.

The intermediary’s demand is DI
t = W0,twcarry,t.

Market clearing. To have an equilibrium, all that is required is to satisfy the market-clearing
condition (A20) each period. This corresponds to:

Dnoise
t = −NFAt (A33)

−W0,t
UIPt −

(
βββg′t covt(mt+1, εεε

g
t+1) + βββ′tcovt(mt+1, εεεt+1) + βββ∗′t covt(m

∗
t+1 − ζt+1, εεε

∗
t+1)

)
γtvart(ut+1)

.

(A34)

All the terms of the right-hand-side only depend on the properties of ζt+1 and primitives of the
model excluding Dnoise

t . This concludes the proof: if we assume that Dnoise
t is equal to this right-

hand-side expression, our conjectured exchange rate is an equilibrium.
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E.3 Deriving the transversality condition

We show how to derive the condition of equation (A21). The transversality condition together with
the sequence budget constraint within a country often gives the following relation:

bt +
∞∑
j=0

βjst+j −
∞∑
j=0

βjxt+1 = 0 ∀t, (A35)

where bt is net foreign assets. Taking a first difference, this leads to:

∆bt +
∞∑
j=0

βj∆st+j −
∞∑
j=0

βj∆xt+1 = 0. (A36)

We can take the conditional expectation of this expression from the point of view of date t and
from the point of view of date t+ 1, respectively:

∆bt + ∆st −∆xt + βEt(∆st+1 −∆xt+1) +
∞∑
j=2

βjEt(∆st+j −∆xt+j) = 0 (A37)

∆bt + ∆st −∆xt + β∆st+1 −∆xt+1 +
∞∑
j=2

βjEt+1(∆st+j −∆xt+j) = 0 (A38)

Subtracting the second relation from the first one gives:

β [∆st+1 −∆xt+1 − Et(∆st+1 −∆xt+1)] + (Et+1 − Et)

 ∞∑
j=2

βj∆st+j −∆xt+j

 (A39)

Rearranging this expression leads to

(∆st+1 − Et∆st+1) + (Et+1 − Et)

 ∞∑
j=1

βj∆st+j+1

 = (Et+1 − Et)

 ∞∑
j=0

βj∆xt+j+1

 , (A40)

the condition of equation (A21).

F Empirical analysis: additional results

CCA analysis for the undirected approach Table A1 reports the results. Each column
represents a foreign country. For a given country, each row reports the canonical correlation between
the assets of that country and the US assets, reported in order of importance, starting from the
largest.

The values of the largest correlations range from 64% for New Zealand to 90% for Canada.
In some cases lower ranked correlations are similar to the largest one, like for Canada or the UK.
In other cases, the magnitude of correlation drops off quickly, e.g., for New Zealand or Norway.
Strictly speaking, the evidence suggests that there are no globally-traded shocks amongst the assets
that we consider.
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Table A1: Maximally correlated shocks across asset markets

AU CA DE JP NO NZ SE CH UK

Rank 1 75.27 89.82 83.07 75.01 79.47 64.31 78.33 82.95 85.87

Rank 2 65.00 85.06 74.17 64.43 63.49 53.95 65.72 62.62 78.70

Rank 3 61.16 83.44 66.70 58.71 57.14 41.73 59.57 60.41 73.55

Rank 4 57.04 78.79 64.90 51.31 45.86 35.98 55.55 56.12 68.02

Rank 5 51.01 76.82 52.80 46.81 41.74 31.44 49.63 52.32 65.85

Rank 6 41.67 70.79 44.19 46.62 33.59 25.33 38.94 46.83 62.21

Rank 7 34.19 62.84 42.30 41.94 26.88 22.99 38.20 41.16 55.83

Rank 8 31.57 56.20 36.66 39.57 25.80 14.58 33.82 35.18 51.39

N 419 395 419 419 406 419 414 419 419

The table reports the correlation in % between the maximally correlated portfolios of asset returns between

the U.S. and each country. The successive pairs of portfolio are orthogonal to each other, and obtained by

canonical correlation analysis. Domestic asset returns are in domestic currency; foreign asset returns are in

foreign currency. Each column is for a different country’s assets relative to the U.S. assets. The assets include

government bonds of maturities between 2 and 10 years (obtained from various central banks) and various

stock portfolios: the market (a combination of large and mid-cap stocks), value and growth portfolios, and

10 industry portfolios (from MSCI).

Figure A1: Decomposition of exchange rate innovations: directed approach
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The figure reports the fraction of variance in exchange rates explained by globally-traded shocks, locally-
traded shocks, and shocks that are not spanned by asset returns, under the assumption of an intermediated
market structure described in Section 4. Each bar is a different country’s currency relative to the U.S. dollar.
Globally-traded shocks are measured using exposures to changes in VIX, GFC, and EBP.
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Directed approach Instead of being agnostic about the nature of globally-traded shocks we
rely on macroeconomic research and assume that they are known. Specifically, we take VIX, GFC
(Miranda-Agrippino and Rey, 2020), and EBP (Gilchrist and Zakrajsek, 2012) as such shocks. This
approach requires a strong assumption that portfolios of traded assets in each economy can span
these shocks.

For each country, we regress its depreciation rate vs USD on these measures of globally-traded
shocks. The R2 from such a regression produce the fraction of the exchange rate variation due
to globally-traded shocks. Next, we implement the regression in Equation (31) where the set of
returns is complemented by the three global shocks to obtain the unspanned component. Naturally,
it is going to be smaller than that in the previous section. The knowledge of the variation due to
global and unspanned shocks delivers the variation due to locally-traded shocks.

Figure A1 reports the resulting decomposition of the variation in the exchange rate into the three
types of shocks. The directed approach delivers somewhat larger contribution of global shocks, but
qualitatively the conclusions are unchanged. The unspanned shocks represent the largest share of
shocks. Contribution of the global shocks is the largest for Australia and Canada, which approach
50%.

G What do return data say about the exchange rate?

Our propositions have implications for various exercises using return data and the assumption of
no-arbitrage only. We first show how to use our formal framework in this context, then discuss
these implications and their relation to the literature.

An alternative interpretation of the framework Instead of representing the assets that
investors in each country can access like in Section 1.1, the sets H and F can simply represent
different subsets of return data expressed in different currencies. In this interpretation H is a set
of assets for which we have data on returns rrrt+1 in the home currency, F is a set of assets for
which we have data on returns rrr∗t+1 in the foreign currency. If we assume that neither of these
sets of returns feature arbitrage opportunities, one can construct minimum (log) variance SDFs
by combining asset returns in the spirit of Hansen and Jagannathan (1991): mt+1 = λ′rrrt+1 and
m∗t+1 = λ∗′rrr∗t+1. This setting is equivalent to Assumption 1.

Furthermore, one might want to assume that there are no arbitrage opportunities when a
combination of these assets is traded together. We call I this joint set of assets, so that this lack of
arbitrage across datasets coincide with Assumption 2. For example, if one assumes that there are
no arbitrage opportunities between the two sets of returns, this corresponds to I = H ∪ F .

In this interpretation of the framework, Propositions 1 and 2 convey all restrictions between
the return data, the corresponding minimum variance SDFs, and the exchange rate. Some combi-
nations of assumptions about which data are observed coincide with assumptions about the market
structures we study in the paper, and hence we can use the implications of our propositions for
these structure. Still, note that this equivalence is only mathematical and the interpretation is
different: here we are simply isolating different datasets as opposed to making assumptions about
what different groups of investors have access to.

Recovering the exchange rate using local currency returns only. A first classic
question is whether the exchange rate can be recovered from return data on local assets only.
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For example, one might want to estimate SDFs for the dollar yield curve and the pound yield
curve, respectively, and use their ratio to recover the exchange rate. This exercise, followed by
Bansal (1997) and Backus, Foresi, and Telmer (2001) should work if markets are complete and
local returns in each country span each state of the world. However, their estimates are at odds
with the empirical behavior of the exchange rate. Chernov and Creal (2023) propose a model of
SDFs including shocks that are not spanned by the yield curves that can price both yield curves
and be consistent with the exchange rate.

We consider the general version of this exercise. H and F each contain distinct local assets in
their local currency and by m and m∗ are the minimum variance SDFs constructed from each set
of asset returns. The assumption that there are no international arbitrage opportunities between
all these assets corresponds to I = H ∪ F .

Mathematically, this situation coincides exactly with the intermediated models we consider
in Section 4. In this case, globally-traded shocks can be constructed using CCA on the local
asset returns rrrt+1 and rrr∗t+1. Proposition 1 immediately says that only the global component of
the exchange rate gt+1 is pinned down. If the local asset returns do not have common shocks,
nothing can be said about exchange rate movements. With globally-traded shocks, the projection
of m∗t+1 − mt+1 on these shocks reveals the projection of ∆st+1 on these shocks. Furthermore,
the local component `t+1 and ut+1 can be arbitrary, so the exchange rate can have any amount of
excess volatility above this projection-based component gt+1.

Chernov and Creal (2023) find that at most 10% of exchange rate variation is explained by
common shocks. Our empirical results suggest that, even after adding stocks to sovereign bonds, the
variance of the globally-traded component gt+1 is small relative to the variance of the depreciation
rate. This implies that a modest component of the exchange rate can be recovered by observing
local returns and using the assumption of no-arbitrage alone.

This conclusion does not rule out that the depreciation rate might exhibit substantial correlation
with specific assets, as long as it is through locally-traded shocks. Finally, to the extent that the
exchange rate features an unspanned component — like we find empirically for stocks and bonds
— Proposition 2 indicates that no-arbitrage does not pin down expected depreciation.

Finally, this conclusion also does not rule out that markets might be complete and integrated.
Throughout this exercise we maintain the assumption that there exists an SDF pricing all assets
(Assumption 2), which might coincide with the IMRSs of both home and foreign households.

Constructing pairs of SDFs satisfying the AMV. Alternatively, one might want to find
SDFs that price the same assets in each currency so that m∗t+1 −mt+1 = ∆st+1.36 The minimum
variance log SDFs solve this question, and our framework demonstrates why.

In this exercise, we have H = F = I, and rrrt+1 = rrr∗t+1+∆st+1. We denote by mt+1 the minimum
variance SDF pricing rrrt+1, and symmetrically m∗t+1 prices rrr∗t+1. Mathematically, this case coincides

with a situation of fully integrated markets. Therefore, by Lemma 1, proj(∆̃st+1|εεεgt+1) = ∆̃st+1.
Furthermore, because all asset returns are globally-traded shocks and hence the minimum variance
SDFs are spanned by asset returns by construction, we also have proj(m̃∗t+1− m̃t+1|εεεgt+1) = m̃∗t+1−
m̃t+1. So, Proposition 1 implies that shocks to the relative minimum variance SDF coincide with

36Constructing the exchange rate using observation of the same asset returns in their original currency and
in another currency is in general trivial. Naturally, if one has “labels” on the return data, the depreciation
rate is simply the ratio of a return in its own and in foreign currency. Even without labels, one can generically
recover a unique depreciation rate so that the ratio of returns in home and foreign currency are equal across
asset pairs.
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shocks to the depreciation rate. Similarly, Proposition 2 implies that the means are equalized as
well. Therefore, ∆st+1 = m∗t+1 −mt+1.

Interestingly, Sandulescu, Trojani, and Vedolin (2021) show that, away from the log-normal case,
this recovery result generalizes by focusing on minimum entropy SDFs: in a log-normal setting,
mimimizing the entropy of the SDF is equivalent to minimize the variance of the log SDFs.37

Of course, this is not the only way to construct pairs of SDFs pricing the assets in two currencies.
Under the assumption of no arbitrage, for any SDF mt+1 that prices rrrt+1, the SDF mt+1 + ∆st+1

prices rrr∗t+1 = rrrt+1 −∆st+1.

This observation highlights that these recovery exercises do not necessarily lead to econom-
ically meaningful SDFs. For example, the world might be well-described by an intermediated
market structure where a global intermediary trades all asset but households face arbitrary types
of frictions. Then, all that this exercise is doing is recovering the projection of mI

t+1 and
mI∗
t+1 = mI

t+1 +∆st+1 on asset returns as opposed to the IMRSs of local investors. This observation
echoes the conclusion of our main theoretical analysis: data on returns and the depreciation rate
alone are in general not enough to identify the financial market structure.

H Evaluating the portfolio approximation

We report the correlation (in %) between the excess return on various stock portfolios —Table
A2— and bonds of different maturities —Table A4— in their origin currency and converted to U.S.
dollars. Tables A3 and A5 start from the U.S. version of these portfolios and converts them to
foreign currency. These correlations are pervasively extremely high, almost all over 99.9%.

37Sandulescu, Trojani, and Vedolin (2021) also study cases with asymmetric data observations across
countries, but with both risk-free assets observed in each country. Mathematically, this corresponds to the
case of partial integration in which the exchange rate is spanned by globally-traded shocks.
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Table A2: Correlation between excess returns converted in different currencies: foreign stocks

AU CA DE JP NO NZ SE CH UK

Market 99.88 99.91 99.93 99.96 99.88 99.89 99.91 99.94 99.94

Value 99.92 99.94 99.93 99.96 99.89 99.85 99.92 99.93 99.94

Growth 99.82 99.88 99.93 99.96 99.9 99.93 99.92 99.95 99.94

Oil, Gas, Coal 99.89 99.93 NA 99.96 99.92 99.92 99.93 NA 99.96

Basic Material 99.84 99.94 99.94 99.95 99.88 99.91 99.91 99.96 99.91

Consumer Discretionary 99.91 99.95 99.93 99.96 99.92 99.94 99.94 99.93 99.96

Consumer Products, Services 99.88 99.96 99.97 99.95 NA NA 99.94 99.93 99.98

Industrials 99.90 99.91 99.94 99.95 99.89 99.92 99.92 99.94 99.94

Health Care 99.91 99.97 99.96 99.96 NA 99.91 99.93 99.96 99.97

Financials 99.92 99.95 99.94 99.96 99.89 99.93 99.91 99.93 99.92

TeleCom 99.92 99.95 99.96 99.96 99.92 99.84 99.93 99.94 99.96

Technology 99.91 99.88 99.96 99.96 99.86 NA 99.94 99.95 99.95

Utilities 99.93 99.91 99.94 99.97 NA 99.93 NA 99.95 99.97

The table reports the correlation (in %) between the excess return on various stock indices expressed in

their home currency and converted to U.S. dollar. The portfolios include the market (a combination of large

and mid-cap stocks), value and growth portfolios, and 10 industry portfolios, all from MSCI. Each column

corresponds to a different country.

Table A3: Correlation between excess returns converted in different currencies: U.S. stocks

AU CA DE JP NO NZ SE CH UK

US Market 99.88 99.94 99.95 99.96 99.87 99.90 99.92 99.94 99.94

US Value 99.90 99.95 99.96 99.96 99.87 99.91 99.92 99.95 99.95

US Growth 99.87 99.93 99.94 99.96 99.88 99.90 99.92 99.94 99.94

US Oil, Gas, Coal 99.90 99.96 99.97 99.98 99.92 99.92 99.94 99.96 99.96

US Basic Material 99.81 99.90 99.92 99.95 99.85 99.88 99.90 99.93 99.93

US Consumer Discretionary 99.91 99.95 99.95 99.96 99.9 99.91 99.92 99.95 99.95

US Consumer Products, Services 99.93 99.97 99.97 99.97 99.92 99.93 99.94 99.96 99.96

US Industrials 99.86 99.93 99.94 99.96 99.84 99.90 99.90 99.94 99.94

US Health Care 99.90 99.96 99.95 99.96 99.88 99.93 99.93 99.95 99.96

US Financials 99.91 99.95 99.95 99.94 99.87 99.93 99.91 99.92 99.94

US TeleCom 99.87 99.93 99.95 99.95 99.9 99.91 99.93 99.96 99.95

US Technology 99.88 99.93 99.94 99.96 99.89 99.91 99.92 99.94 99.94

US Utilities 99.84 99.92 99.94 99.96 99.85 99.88 99.91 99.96 99.94

The table reports the correlation (in %) between the excess return on various stock indices expressed in the

U.S. dollars and converted to foreign currency. The portfolios include the market (a combination of large

and mid-cap stocks), value and growth portfolios, and 10 industry portfolios, all from MSCI. Each column

corresponds to a different country.
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Table A4: Correlation between excess returns converted in different currencies: foreign bonds

AU CA DE JP NO NZ SE CH UK

2Y Bond 99.86 99.97 99.92 99.97 NA 99.85 99.91 99.91 99.95

3Y Bond 99.86 99.97 99.92 99.97 99.91 NA NA 99.93 99.96

4Y Bond NA 99.97 99.93 99.97 NA NA NA 99.94 99.96

5Y Bond 99.87 99.97 99.93 99.97 99.91 99.85 99.91 99.93 99.96

6Y Bond NA 99.96 99.93 99.97 NA NA NA 99.92 99.96

7Y Bond NA 99.96 99.93 99.96 NA NA 99.91 99.91 99.96

8Y Bond NA 99.96 99.92 99.96 NA NA NA 99.90 99.96

9Y Bond NA 99.96 99.92 99.96 NA NA NA 99.89 99.96

10Y Bond 99.87 99.96 99.93 99.96 99.91 99.88 99.91 99.88 99.96

The table reports the correlation (in %) between the excess return on government bonds of different maturity

expressed in their home currency and converted to U.S. dollars. Bond returns are constructed from yields

obtained from each country’s central bank. Each column corresponds to a different country.

Table A5: Correlation between excess returns converted in different currencies: U.S. bonds

AU CA DE JP NO NZ SE CH UK

US 2Y Bond 99.9 99.95 99.95 99.97 99.91 99.93 99.95 99.93 99.96

US 3Y Bond 99.91 99.96 99.95 99.97 99.92 99.93 99.95 99.92 99.96

US 4Y Bond 99.92 99.96 99.94 99.96 99.92 99.94 99.95 99.91 99.96

US 5Y Bond 99.91 99.97 99.93 99.96 99.91 99.94 99.95 99.89 99.95

US 6Y Bond 99.91 99.97 99.93 99.96 99.89 99.94 99.94 99.88 99.95

US 7Y Bond 99.9 99.96 99.92 99.96 99.88 99.94 99.94 99.86 99.95

US 8Y Bond 99.89 99.96 99.91 99.96 99.86 99.93 99.93 99.85 99.95

US 9Y Bond 99.88 99.96 99.9 99.96 99.85 99.93 99.93 99.84 99.95

US 10Y Bond 99.88 99.96 99.9 99.96 99.84 99.93 99.92 99.83 99.94

The table reports the correlation (in %) between the excess return on U.S. government bonds of different

maturity expressed in U.S.. dollars and converted to foreign currency. Bond returns are constructed from

yields obtained from the Federal Reserve. Each column corresponds to a different country.
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