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Introduction

The exchange rate (FX) macro disconnect puzzle is a broad set of evidence suggest-

ing little to no relationship between exchange rates and the macroeconomy (Obstfeld

and Rogoff, 2001). As an alternative, some macroeconomic models of exchange rate

point towards the financial market as the source of exchange rate volatility. Indeed,

an immediate role of the exchange rate is to balance out demand and supply in the

currency market. To the extent the currency market is linked to other financial mar-

kets, a natural question is how much information do financial markets contain about

the exchange rate. Specifically, suppose one adopts lack of international arbitrage

opportunities as a disciplining principle. How much is the possible equilibrium be-

havior of the exchange rate constrained by the local Euler equations, that is correct

valuation of locally traded assets with local stochastic discount factors (SDF)?

Interestingly, one may have different priors in this regard. On the one hand, because

the exchange rate is a separate asset class, knowing prices and returns of locally

traded assets might contain little information about the exchange rate. After all,

few assets — typically derivatives — can be priced directly by no arbitrage. On the

other hand, the exchange rate is a special asset which converts one unit of account

into another unit of account, and local financial markets contain information about

the respective units of account. To make this concrete, consider a special case of

complete local financial markets that provide information about state prices in local

currency (i.e., the £ price of a state of the world in the UK and its $ price in the US).

If any agent (e.g., an intermediary) has access to both local financial markets, then

there exists a unique value of the exchange rate depreciation which is consistent

with no arbitrage. In this sense, the exchange rate is fully pinned down by the
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information from local financial markets, resulting in the asset market view (AMV)

of the exchange rate:

∆st+1 = m∗
t+1 −mt+1, (1)

where ∆s is the log home currency depreciation rate, m (m∗) is the log SDF of the

home (foreign) investor (Backus, Foresi, and Telmer, 2001).

Of course, the case of complete asset markets, even if an important benchmark, is

very special and likely unrealistic. Therefore, we ask whether this logic that links

the exchange rate to equilibrium properties in local financial markets extends beyond

complete markets to a general structure of local and global financial markets.1 In

moving away from complete markets, one can relax which assets are traded (e.g.,

only some bonds and/or some stocks) or who trades (e.g., situations of imperfect

integration or in which households trade through intermediaries). All these pos-

sible departures from complete markets would affect equilibrium properties of the

exchange rate. This range of possible environments poses a conceptual challenge

to drawing general lessons about the effect of market incompleteness, as every such

departure from complete markets seemingly requires a case-by-case analysis.

This paper shows that there exists a general equilibrium relationship between the

exchange rate and local financial markets that must hold independently of the degree

of asset market completeness and the structure of traded risks. This relationship is

1Note that in the example above complete markets were not essential, as the pricing of the
exchange rate relied on the presence of an Arrow security for a given state of the world in each of
the two local markets connected via an intermediary. In this sense, pinning down the state-specific
exchange rate depreciation requires neither a full set of AD securities, nor an integrated market.
Furthermore, one does not need to know any SDFs, the knowledge of the £ and $ prices of the
Arrow security is sufficient; a relatively expensive £ price requires a $ depreciation.
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portable across all models — general or partial equilibrium (i.e., any model of SDF

and returns or any macro model with a financial market) — that respect no arbitrage

in financial pricing. Thus, it could be applied in any environment without fully

solving for equilibrium, which is often difficult analytically and even computationally.

Away from complete markets, these constraints do not uniquely pin down the ex-

change rate, yet often impose interesting restrictions on its properties. While under

complete markets the innovations to the exchange rate coincide with the innovations

to the SDF differential, in the general case only their contemporanous projections on

globally traded risks ϵg — risks that both home and foreign investors can trade —

line up:2

proj( ∆̃st+1 |ϵgt+1) = proj( m̃∗
t+1 − m̃t+1 |ϵgt+1), (2)

where x̃t+1 ≡ xt+1 − Etxt+1 is an innovation to the variable x.

When globally traded risks span both the FX and the SDF differential, then both

sides of Equation (2) are equal to innovations of the exchange rate and the SDF

differential, respectively, as in the complete-markets case. Another special case of

incomplete markets that is extensively discussed in the literature is when markets are

fully integrated — both investors have access to the same assets, including risk-free

assets in both currencies — (e.g., Lustig and Verdelhan, 2019, Maurer and Tran,

2021, Sandulescu, Trojani, and Vedolin, 2020). In that case the exchange rate itself

is a global risk because it can be replicated via the carry trade. Then the left-hand

side of the Equation is simply the innovation in the depreciation rate and it is equal

2Formally, globally traded risks ϵgt+1 are all random variables that can be spanned by returns
in each of the local markets in local currencies, extending the concept of locally traded Arrow
securities discussed above.
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to the projection of SDFs on the exchange rate. Our results apply beyond the case

when the exchange rate and/or SDFs are spanned by globally traded risks, covering

a wide range of additional market structures that impose less stringent constraints

on the equilibrium relationship between the FX depreciation and SDF differential.

While our first result in (2) characterizes restrictions on exchange rate shocks (inno-

vations), our second result concerns the expected depreciation, or FX risk premium.

We show that the expected depreciation rate is similar to the one under complete

markets when traded asset returns span the exchange rate; otherwise, it is uncon-

strained.3 In the latter case, we use an additional “good deal” bound (exclusion of

quasi-arbitrages) to limit the expected depreciation given the unspanned component

of FX volatility. We further prove that constraints associated with the two results

exhaust all possible restriction imposed by the financial markets on the exchange

rate, i.e. they are necessary and sufficient to preclude international arbitrage.

We use these results to investigate which specific economic environments could be

helpful in resolving the currency puzzles that arise in equilibrium models with com-

plete markets. In this context we study what SDFs prescribed by equilibrium models

imply about the exchange rate across a variety a market structures. Complete-

markets-based models often yield counterfactual behavior of the volatility (Brandt,

Cochrane, and Santa-Clara, 2006), cyclicality (Backus and Smith, 1993), and FX

risk premium (Fama, 1984).

What emerges in our analysis as the organizing principle is not market completeness

per se, but rather the prominence of globally traded risks. It is necessary to both

3More precisely, if FX is spanned only by globally traded risks, then FX risk premium is the
same as under complete markets. When FX is spanned by globally and locally traded risks, then
FX risk premium may feature an additional term that is still fully determined by the financial
markets. Without spanning, FX risk premium is unconstrained by the financial market altogether.
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move away from integrated markets and have sparsely traded risks to loosen the grip

of financial markets on the equilibrium exchange rate. When globally traded risks are

sparse, local financial markets contain little information about possible equilibrium

exchange rate behavior which is shaped by forces outside these markets. This feature

is helpful in accommodating empirical evidence on the financial FX disconnect.

Figure 1 offers one way to visualize this insight. This figure considers the trade-off

in capturing both variance vart(∆st+1) and cyclicality covt(m
∗
t+1 − mt+1,∆st+1) of

the exchange rate. The point labeled as ‘Data’ is a stylized representation of the

evidence: a relatively stable and approximately acyclical exchange rate. The point

labeled ‘CM’ represents the complete markets case where vart(∆st+1) = vart(m
∗
t+1−

mt+1) = covt(m
∗
t+1 −mt+1,∆st+1). The white cone (the entire area outside of grey)

depicts all mathematically feasible combinations of the two objects. This area also

corresponds to the case when the variance of the global risk component is equal to

zero, i.e. proj( m̃∗
t+1 − m̃t+1 |ϵgt+1) = 0.

The pink cones in Figure 1 show the feasible combinations of FX volatility and

cyclicality as the variance of the global shocks increases to 25% (the larger cone) and

to 90% (the smaller cone), degenerating in the limit to the red vertical line (ray) when

global shocks span 100% of the SDF differential. The blue 45-degree line segment

from the origin to CM corresponds to the case when FX is spanned by global shocks,

i.e. the FX is a global risk itself (e.g., the aforementioned case of integrated markets).

Over this segment, covt(m
∗
t+1 −mt+1,∆st+1) = vart(∆st+1), as the SDF differential

and the exchange rate must be perfectly correlated along global shocks.

It is clear from this picture that models with a dominant role of globally traded risks

face similar challenges in terms of FX volatility and cyclicality as complete market
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Figure 1: The impact of global shocks on variance and cyclicality of exchange rates

Data

CMvart(m
∗
t+1 −mt+1)

Cyclicality
covt(m

∗
t+1 −mt+1,∆st+1)

Variance
vart(∆st+1)

Note: The figure illustrates the trade-offs in matching volatility and cyclicality of the exchange rate
(see text). The point labeled Data is a stylized representation of the evidence regarding the depreci-
ation rates; the point labeled CM represents the complete market setting. The grey area represents
infeasible combinations of volatility and cyclicality due to the Cauchy-Schwarz inequality.

models. In contrast, models that imply relatively small role for global shocks have a

potential for capturing the evidence. We apply our theoretical results to the specific

economic settings to see what kind of variance-cyclicality profiles could be obtained.

We find that if only one dimension of market incompleteness is compromised — i.e.,

either market integration or the set of traded risks — the connection between the

exchange rate and SDFs is similar to that of complete markets, resulting in the same

puzzles.

Allowing for both types of market incompleteness at the same time — namely, inter-

mediated markets with sparsely traded risks — results in limited restrictions on the

exchange rate, i.e. local financial markets do not say much about it, and that leads

to a relaxation of the tension between the volatility and cyclicality puzzles. As a

result, such a framework has a potential to capture the puzzling features of the data.

We conclude that intermediated markets in which the nature of economic shocks is
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varied and not too strongly related across countries are particularly promising in

addressing the puzzles quantitatively.

As a last element of our analysis we develop evidence regarding the shock structure.

We consider G-10 countries, U.S. vs foreign on a bilateral basis, from 1988 to 2022

at a monthly frequency. We designate sovereign bonds of maturities ranging from

2 to 10 years, and various stock indexes (the market, value-growth, and industry

portfolios) as risky assets. First, we evaluate whether the depreciation rate can be

spanned by asset returns. The answer is no: the largest spanning regression R2 is

45% for Canada (vs the U.S.), the lowest is 25% for Switzerland. Thus, unspanned

shocks play an important role in the variation of the exchange rate. This conclusion

is consistent with that of Chernov and Creal (2023). The results depend on the

choice of spanning assets. It is an interesting topic for future research to establish

the optimal currency spanning portfolio.

Next, we quantify global shocks in this empirical setting using two methods. First,

we use canonical correlation analysis to find maximally correlated portfolios in a

pair of countries. Ideally, the maximum correlation should equal to 1, but we allow

for correlations as low as 0.6 for the portfolios to qualify as measures of global

shocks. Second, we use shocks that are commonly used as global in the literature:

the Volatility Index (VIX), the Global Financial Cycle (GFC, Miranda-Agrippino and

Rey, 2020), and the Excess Bond Premium (EBP, Gilchrist and Zakrajsek, 2012).

This method assumes that one can find shock-replicating portfolios in each country.

Regardless of the method, global shocks contribute little to the variation in exchange

rates: most countries have no more than 10% of FX variation explained by global

shocks. Thus, the evidence is supportive of our theoretical conclusions that currency

puzzles should be resolved with models allowing for plenty of unspanned and local
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shocks to the exchange rate.

Related literature. We derive general restrictions on the exchange rate given fi-

nancial market structure in each of the two countries. We apply these restrictions

to the famous facts about exchange rates such as their relatively low volatility and

weak relation to business cycles. The resulting implication that exchange rates fea-

tures large unspanned and local shocks is very much in the spirit of Hansen and

Jagannathan (1991) agnostic characterization of asset-pricing models. Departures

from complete markets in the context of currency puzzles is explored by Lustig and

Verdelhan (2019). They consider a special case where the exchange rate is spanned

because each country’s investor can trade the other country’s risk-free bond. That

makes it difficult to capture volatility and cyclicality puzzles jointly. Jiang, Krish-

namurthy, Lustig, and Sun (2022) consider a similar incomplete-market setting with

international access to trading in risk-free bonds but complemented by safe asset

demand for dollar bonds. This feature leads to wedges in the Euler equations, which

are ruled out in our setting. One implication of these wedges is that the exchange

rate is affected by the convenience yield in addition to risks spanned by the SDFs.

Chernov and Creal (2023) emphasize inability of bonds to span exchange rates and

propose an affine term structure model with martingale shocks to the SDF, which

affect the exchange rate but not bond prices. RBC models of exchange rates are

represented by Verdelhan (2010) (habits), Colacito and Croce (2011) (long-run risk),

and Farhi and Gabaix (2016) (disasters), among many others. Exchange rate mod-

els with intermediation include Gabaix and Maggiori (2015), Gourinchas, Ray, and

Vayanos (2022), and Itskhoki and Mukhin (2021).
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1 Setup

We are interested in restrictions on the behavior of exchange rates coming from

properties of other asset returns. To answer this question, we introduce a general

framework and derive two sets of restrictions — on the risk (innovation) of the

exchange rate depreciation and the expected exchange rate depreciation. In broad

strokes, we fix the financial market structure of domestic and foreign households, that

is, the returns on assets these households can trade and the SDFs of the households.

Next, we establish which restrictions this financial structure imposes on the exchange

rate between the two countries.

1.1 Market structure

We consider settings with two representative households, h for home, and f for

foreign. Each household can trade a set of assets, H and F , respectively. Those

sets can contain subsets of local assets and foreign assets converted to local currency.

Figure 2 demonstrates some examples. For instance, in autarky H contains domestic

stocks and bonds, while F contains the foreign ones. When markets are integrated,

H and F contain identical assets but expressed in respective currencies, e.g., H may

include a domestic sovereign bond and a foreign equity index converted to domestic

currency, while F contains domestic bond converted to foreign currency and foreign

equity index. If markets are complete, H and F contain the full set of Arrow-Debreu

securities expressed in respective currencies. Market completeness is a particular

case of full market integration where securities span all possible risks.

Further, we consider a set I of assets traded by an international arbitrageur. Assets
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Figure 2: Examples of Market Structures

A. Autarky

H F

B. Partial Integration

H F

H F

C. Intermediation

I

H F

I

H F

The figure illustrates different market structures. H and F are the set of assets invested in by the
home and foreign household. Panel A corresponds to financial autarky. Panel B corresponds to
partial integration, symmetric or asymmetric. Panel C corresponds to an intermediated market,
with an intermediary I trading some or all assets.

can be included in this set for two reasons. First, it could be that home and foreign

households trade some assets in common, as in the partially integrated cases above.

Then, either h or f can be considered the international arbitrageur, with I = H or

I = F , respectively. Second, it could be that a financial intermediary trades across

borders even if households do not, as in the examples in panel C of Figure 2. In this

case, I are the assets from H and F that the intermediary can trade. We require

that H and F each contain a risk-free bond in the respective currency, and I contains

both risk-free bonds.

Our main result is that restrictions on the exchange rate in this large family of

market structures are detemined by the properties of returns in H ∩ I expressed in

domestic currency and returns in F ∩ I expressed in foreign currency. To continue

our examples, if markets are partially integrated and I = H, then H ∩ I = H are

the assets traded by the domestic household, F ∩ I = F ∩H are the assets traded by
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both households. In intermediated markets, H ∩ I is the set of assets traded both

by the domestic household and the intermediaries; ditto for F ∩ I.

The base assets in the set H ∩ I have log returns rrrt+1 = (r1,t+1, . . . , rN,t+1). We

assume this collection includes a risk-free asset with return rft in home currency

known at time t. The corresponding set of all feasible portfolio returns is rrrp,t+1 =

{rp,t+1|∃wwwt ∈ RN : www′
tιιι = 1, rp,t+1 = log (www′

t exp (rrrt+1))}. Furthermore, we assume

that asset returns are log-normal, that is rrrt+1 are multivariate normal,MVN(µµµt,ΣΣΣt).

Similarly, the returns of base assets in F ∩ I are rrr∗t+1 in foreign currency, log-normal

of size N∗, and contain a foreign-currency risk-free rate of r∗ft . The corresponding set

of portfolio returns is rrr∗p,t+1. Throughout the paper, we use the Campbell and Viceira

(2002) approximation for log portfolio excess returns in the relevant derivations as

described in the Appendix.

1.2 Pricing Assumptions

Local investors. We specify valuation mechanisms by each representative house-

hold with a given SDF m at home and m∗ abroad. These SDFs value assets as

follows.

Assumption 1. The domestic (log) stochastic discount factor mt+1 prices all assets

in H in domestic currency. In particular, it satisfies the Euler equation:

∀rt+1 ∈ rrrp,t+1 : Et [exp(mt+1 + rt+1)] = 1. (3)
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Similarly, the foreign log SDF m∗
t+1 prices all assets in F in foreign currency, and

∀r∗t+1 ∈ rrr∗p,t+1 : Et

[
exp(m∗

t+1 + r∗t+1)
]
= 1. (4)

Recall that rrrp,t+1 (rrr∗p,t+1) is the set of feasible portfolio returns constructed from

assets in H ∩ I (F ∩ I). Thus (3) and (4) require only pricing of assets in sets H ∩ I

and F ∩ I, respectively. These Euler equations are all that is needed for our formal

results. Nevertheless, in many economic environments it is reasonable to assume

that the same home and foreign SDFs price all assets in H and F , respectively.

Assumption 1 can be viewed as the definition of local financial market equilibrium

that we use in our analysis.4

We focus on situations with log-normal SDFs. The Euler equations imply that ex-

pected excess returns are proportional to the covariance with the stochastic discount

factors. In our log-normal setting, this corresponds to:

∀rt+1 ∈ rrrp,t+1 : Et(rt+1) +
1

2
vart(rt+1) = rft − covt(mt+1, rt+1), (5)

∀r∗t+1 ∈ rrr∗p,t+1 : Et(r
∗
t+1) +

1

2
vart(r

∗
t+1) = r∗ft − covt(m

∗
t+1, r

∗
t+1). (6)

We do not take a stand on the origins of these discount factors as long as the combi-

nation of SDFs and returns satisfy Assumption 1. In some applications, the discount

factors represent optimal decisions of domestic and foreign households. For exam-

4Note that equilibrium in the financial market may involve borrowing or short-sale constraints,
infrequent portfolio adjustment, or convenience yield on certain assets. In all such cases, some Euler
equations do not always hold with equality, and in our analysis this simply requires redefining sets
H and F to exclude such assets (for a given time period t). In this case, conditions (3) and (4) can
be thought of as definitions of sets H and F rather than an assumption.
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ple, with CRRA utility, mt+1 = −γ∆ct+1 where ct being log aggregate domestic

consumption and γ a coefficient of risk aversion. Further, ct could be treated as

observable object that does not change with economic environment, or could be al-

lowed to change endogenously. In other applications, the discount factors are simply

a representation of the risk-return relation among assets traded in a country. For

example, the SDF could be constructed from asset returns as mt+1 = λλλ′trrrt+1, with

λλλt ∈ RN , in the spirit of Hansen and Jagannathan (1991).5 Here, the SDF is changing

with the market structure that determines the subsets of assets traded by investors.

Our results lead to a set of cross-equation restrictions on the joint behavior of en-

dogenous variables: returns, SDFs, and the exchange rate. These relationships must

hold in any equilibrium environment that respects no arbitrage. Further, within an

equilibrium, there often exist many SDFs that satisfy Assumption 1; our results hold

for every admissible SDFs.

International arbitrage. Our assumptions so far ensure that each of the domes-

tic and foreign sets of asset returns have standard and tractable properties. Impor-

tantly, note that none of them involve explicitly the exchange rate. We now turn to

the connection between domestic and foreign asset returns. Specifically, we assume

that there are no arbitrage opportunities for assets in I, i.e. assets traded by an

international investor. This implies existence of an SDF for the international arbi-

trageur. Unlike for households, we do not assume any knowledge of this SDF beyond

its existence.

5More precisely, this expression could be viewed as a log-approximation to SDFs which are
constructed from portfolio returns. We can write mt+1 = log

(
λλλ′
t exp(rrrt+1)

)
, the same way we

defined rrrp,t+1 above. One can then consider, for example, weights λλλt that minimize the variance or
the entropy of the SDF.
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The set of returns in I combines the domestic and foreign set of international returns

converted to the domestic currency.6 Following our notations, international portfolios

are generated by the base assets rrrIt+1 = (rrrt+1, rrr
∗
t+1 + ∆st+1), where ∆st+1 is the

log home currency depreciation rate. We denote the set of international portfolios

generated by these base assets by rrrIp,t+1.

Assumption 2. There are no arbitrage opportunities in the set of international

returns rrrIp,t+1, that is:

∀rp,t+1 ∈ rrrIp,t+1 : vart(rp,t+1) = 0 ⇒ Et(rp,t+1) = rft. (7)

In words, any portfolio that has no risk must earn the risk-free rate of return.7

1.3 Global, local and unspanned shocks

Intuitively, returns are affected by a collection of shocks, some of which are local to

each economy, ϵϵϵt+1 or ϵϵϵ∗t+1, while others are common to both, i.e. global shocks ϵϵϵgt+1.

We denote with tilde the innovation (or shock) for any variable x, that is x̃t+1 ≡

xt+1 − Etxt+1.
8 With this, we define the set of globally-traded shocks, or global

shocks for short.

Definition 1. The set of global shocks is ϵϵϵgt+1 = {ϵgt+1|∃λλλ ∈ RN ,λλλ∗ ∈ RN∗
: ϵgt+1 =

λλλ′r̃rrt+1 = λλλ∗′r̃rr∗t+1}.
6Our conclusions are unchanged if we focus on international arbitrage in foreign currency.
7In our log-normal setting, condition (7) is equivalent to the absence of arbitrage opportunities.

In more general settings, it is a necessary condition for no arbitrage.
8Note that vart(x̃t+1) = vart(xt+1) and we use this notation interchangeably.
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Thus, global shocks can be traded by local investors in their local currency in both

countries. Appendix A shows how to construct a basis of this space from the covari-

ance matrix of rrrt+1 and rrr∗t+1. Local shocks ϵϵϵt+1 and ϵϵϵ∗t+1 are the residuals of return

innovations, r̃rrt+1 and r̃rr∗t+1, after controlling for global shocks.

Global shocks can arise because of common underlying economic shocks (e.g., pro-

ductivity) that determine returns in both countries. Alternatively, global shocks

can emerge without common fundamental shocks as a result of asset trading across

countries — either directly by households or via an intermediary.

As an example, consider partially integrated markets such as the ones in Fig-

ure 2B. Imagine that rrrt+1 = (rft, r1,t+1, r2,t+1, r
∗
ft + ∆st+1, r

∗
1,t+1 + ∆st+1) and

rrr∗t+1 = (r∗ft, r
∗
1,t+1, r

∗
2,t+1, rft − ∆st+1, r1,t+1 − ∆st+1). In such a setting, the domes-

tic investor can construct a portfolio with a return r∗1,t+1 − r∗ft by buying the foreign

risky asset 1 and by selling the foreign risk-free asset, both converted into domes-

tic currency. Similarly, the foreign investor can construct a portfolio with a return

r1,t+1 − rft. As a result, both r̃1,t+1 and r̃∗1,t+1 are in the set of global shocks ϵϵϵgt+1.
9

Furthermore, here the FX risk ∆̃st+1 is also a global shock: it can be traded by both

households through their respective carry trades.

Finally, we refer to any other sources of variation orthogonal to asset returns

(r̃rrt+1, r̃rr
∗
t+1), or equivalently orthogonal to local and global shocks (ϵϵϵgt+1, ϵϵϵt+1, ϵϵϵ

∗
t+1),

as unspanned shocks.

9 A practical example of such global shocks arises in the context of commodity (e.g., oil) futures
denominated in different currencies, or stocks of the same company traded in jurisdictions with
different currencies (e.g., Royal Dutch Shell).
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Exchange rate depreciation. We can use this taxonomy of shocks to uniquely

decompose the innovation to the depreciation rate as follows:

∆̃st+1 = gt+1 + ℓt+1 + ut+1, (8)

where gt+1 is a linear combination of global shocks ϵϵϵgt+1, ℓt+1 is a linear combination

of both types of local shocks, ϵϵϵt+1 and ϵϵϵ∗t+1, and ut+1 is unspanned.

Thus, there are four components to the exchange rate depreciation, ∆st+1. The

first is the conditional expectation Et∆st+1. Then, there are two types of shocks

spanned by assets, a global component gt+1 and a local component ℓt+1. Finally,

there can be unspanned shocks ut+1. This decomposition will play a central role in

our characterization of restrictions on the behavior of the exchange rate.

Relatedly, one can construct the spanned components directly from asset returns:

∆̃st+1 = r̃p,t+1 − r̃∗p,t+1 + ut+1, (9)

with rp,t+1 ∈ rrrp,t+1 and r∗p,t+1 ∈ rrrp,t+1 two portfolios with best R2 for explaining the

exchange rate.10 Mechanically, the residual coincides with the unspanned component

ut+1 in equation (8). If this unspanned component is equal to 0, the depreciation

rate is spanned by asset returns, and the difference between the shocks to returns on

the two portfolios replicates the exchange rate shock exactly.

10Formally, the portfolios maximize R2 = 1 − vart(∆st+1 − (r̃p,t+1 − r̃∗p,t+1))/vart(∆st+1).This
pair of portfolios is not unique when global shocks are present. All of our results hold for any such
pair.
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2 The general asset market view of exchange rates

In this section, we characterize the restrictions on the behavior of the exchange rate

imposed by the absence of international arbitrage and given the properties of returns

on traded assets, rrr and rrr∗, and local SDFs m and m∗ that price them. We show that

Assumptions 1 and 2 impose two sets of necessary restrictions on the depreciation

rate — one on the shocks to the depreciation rate ∆̃st+1 and another on the expected

depreciation rate Et∆st+1.

We demonstrate that in a complete market setting these two sets of restrictions lead

to the well-known asset market view of exchange rates and the puzzles that come with

it. Subsequent analysis spells out the implications of these restrictions for a much

larger set of market structures and revisits the puzzles in light of these results. All

the proofs are in Appendix B. Appendix C proves the sufficiency of our key results:

if the two sets of restrictions hold, Assumption 2 about the absence of international

arbitrage opportunities is valid.

2.1 Exchange rate shocks

We show that the component of the depreciation rate that loads on global shocks,

gt+1, must coincide with the component of the difference of SDFs that loads on global

shocks.

Proposition 1. Under Assumptions 1 and 2,

proj(m̃∗
t+1 − m̃t+1|ϵϵϵgt+1) = proj(∆̃st+1|ϵϵϵgt+1) = gt+1. (10)
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Said differently, start from any pair of admissible local SDFs and regress them on all

global shocks. The predicted value of this regression is equal to the global component

of the exchange rate, gt+1:

m∗
t+1 −mt+1 = gt+1 + vt+1 with vt+1 ⊥ ϵϵϵgt+1. (11)

What is missing in Proposition 1 is just as important as what is there. Local financial

markets do not impose any restrictions on the component of the depreciation rate

loading on either local shocks (ϵϵϵt+1, ϵϵϵ
∗
t+1) or its unspanned component ut+1. Thus, in

general, financial markets impose less restrictions on the exchange rate as compared

with complete markets.

How does the absence of arbitrage lead to this result? In complete markets, local and

foreign investors must agree on the price of all payoffs after conversion to a common

currency: covt(mt+1, rt+1) = covt(m
∗
t+1 − ∆st+1, rt+1) for every rt+1. Proposition 1

comes from a generalization of this result. To preclude arbitrage opportunities, local

and foreign investors must only agree on the price of risks that they both trade —

the global shocks.

Without a change of currency, the argument is standard: the international arbi-

trageur can buy the global shock ϵgt+1 in the home market and sell it in the for-

eign market.11 Because this portfolio is riskless, the two risk premia must coincide,

covt(mt+1, ϵ
g
t+1) = covt(m

∗
t+1, ϵ

g
t+1). In Appendix B.2, we show that this logic extends

to the case with currency conversion, and no arbitrage requires an adjustment to

expected returns of covt(∆st+1, ϵ
g
t+1), the so-called quanto adjustment. This implies

that the comovement of the depreciation rate with global shocks must be the same as

11See, for example, Chen and Knez (1995).
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that of the relative SDFs, covt(m
∗
t+1−mt+1, ϵ

g
t+1) = covt(∆st+1, ϵ

g
t+1). Conversely, for

shocks that are not traded by both investors, it is impossible to construct candidate

arbitrage portfolios that relate pricing in the two markets (see Appendix C).

2.2 Expected depreciation rate

We turn to restrictions on the behavior of the expected depreciation rate. These

restrictions depend on the relation of the exchange rate with asset returns. Start from

the projection of the exchange rate on asset returns, represented by two portfolio

rp,t+1 and r∗p,t+1 as in equation (9). Recall that when rp,t+1 and r∗p,t+1 span the

exchange rate, the unspanned component ut+1 is equal to 0. We define δt as the

difference of the two portfolios’ expected returns:

δt ≡
[
rft − covt(mt+1, rp,t+1)−

1

2
vart(rp,t+1)

]
−

[
r∗ft − covt(m

∗
t+1, r

∗
p,t+1)−

1

2
vart(r

∗
p,t+1)

]
. (12)

The following proposition relates the behavior of the expected depreciation rate to

spanning of the exchange rate and this quantity, which only depends on asset returns

and local SDFs.

Proposition 2. The expected depreciation rate is pinned down if and only if the

exchange rate is spanned by asset returns, that is when ut+1 = 0. In this case, it is:

Et∆st+1 = δt = rft − r∗ft︸ ︷︷ ︸
UIP

− covt(mt+1,∆st+1)︸ ︷︷ ︸
Exchange rate risk premium

− 1

2
vart(∆st+1)︸ ︷︷ ︸

convexity

+ θt, (13)
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where θt = covt(m
∗
t+1 −mt+1 −∆st+1, r

∗
p,t+1). This quantity collapses to θt = 0 when

the exchange rate is spanned by global shocks.

The most important implication of Proposition 2 is that it delineates two cases: either

local market pricing determines expected depreciation exactly, or it says nothing

about it. The expected depreciation rate is closely related to the risk premium for

exchange rate risk. Exposure to this risk can be obtained by engaging in the carry

trade. This risk premium is pinned down by pricing in local financial markets only if

the international arbitrageur can use locally traded assets to perfectly offset this risk.

Therefore, the absence of arbitrage has no bearing on this quantity if the exchange

rate is not spanned by asset returns, that is, ut+1 ̸= 0.

Spanned exchange rate. When the exchange rate is spanned, the international

arbitrageur uses the two local markets to price the exchange rate risk. Hence, the

two local SDFs play a role in the expected depreciation rate. This insight explains

the presence of the novel adjustment term θt in equation (13) relative to the standard

complete market formula (with θt = 0). It also leads to a symmetric expression to

equation (13) which emphasizes the foreign SDF m∗
t+1:

δt = rft − r∗ft − covt(m
∗
t+1,∆st+1) +

1

2
vart(∆st+1) + θ∗t , (14)

with θ∗t = covt(m
∗
t+1 −mt+1 −∆st+1, rp,t+1).

It is only when the local investors are able to replicate the exchange rate on their own

that their individual Euler equations are enough to obtain the expected depreciation.

If the home (foreign) investor can trade both spanning portfolios, then θt = 0 (θ∗t =
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0), and the standard complete market formula for the home (foreign) investor holds.

For example, this situation occurs in settings in which the home investor acts as an

international arbitrageur. For both home and foreign investors to price the exchange

rate risk, they must be able to trade it, that is, the exchange rate is a global shock.

Unspanned exchange rate. When the exchange rate is not spanned by traded

assets, its expectation can deviate from this formula by an arbitrary wedge,

Et∆st+1 = δt + ψt. (15)

This complete flexibility might lead to implausibly large trading profits for the in-

ternational investor. One can be more informative about these deviations ψt by

imposing a condition that is stronger than the absence of arbitrage (Assumption 2).

Assumption 3. (No quasi-arbitrage) There is an upper bound B on Sharpe ratios

in international markets:

∀rIp,t+1 ∈ rrrIp,t+1 :

∣∣∣∣Et(r
I
p,t+1) +

1

2
vart(r

I
p,t+1)− rft

∣∣∣∣ ≤ B
√
vart(rIp,t+1). (16)

This assumption restricts the Sharpe ratio of trades in international markets. Such

bounds have a long tradition in finance, going back to Cochrane and Saa-Requejo

(2000), Kozak, Nagel, and Santosh (2020), and Ross (1976). Intuitively, it can be

motivated by the view that if trades that are too profitable emerged in equilibrium,

new financial institutions would step in to take advantage of them. Under this view

we obtain the following condition.

Proposition 3. Under Assumption 3, the wedge ψt in the expected depreciation rate
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must satisfy:

∣∣∣∣ψt +
1

2
vart(ut+1)

∣∣∣∣ ≤ B
√
vart(ut+1) ≡ B

√
(1−R2)vart(∆st+1), (17)

where R2 is the R-squared in the regression of ∆st+1 on rrrt+1 and rrr∗t+1.

This proposition limits possible expected depreciations in the case of an unspanned

exchange rate. It indicates that deviations from the risk premium in the spanned

case are bounded by the volatility of unspanned shocks.

3 Implications for the currency puzzles

In this section we discuss how the different market structures are capable of speaking

to the key currency puzzles: cyclicality, volatility, and forward premium. Thus the

thought experiment in this section is that the SDFs are emerging from economic

theory, i.e., they are IMRS of households in each country, and a researcher is trying

to characterize the resulting exchange rate.

3.1 Complete markets

The complete markets case is the relevant benchmark for our discussion as it forms

the backbone of many models attempting to explain the currency puzzles. Financial

markets are complete when investors have access to the full set of Arrow-Debreu

22



securities in both markets. In this setting, ϵϵϵgt+1 spans all possible risks. Then Propo-

sition 1 implies

m̃∗
t+1 − m̃t+1 = ∆̃st+1. (18)

Innovations to the depreciation rate must equal innovations to the difference of

stochastic discount factors, completely pinning down exchange rate shocks.

This result leads to two puzzles about the behavior of the exchange rate. First,

consider the variance of the depreciation rate:

vart(∆st+1) = vart(m
∗
t+1 −mt+1)

= vart(m
∗
t+1) + vart(mt+1)− 2covt(mt+1,m

∗
t+1). (19)

Brandt, Cochrane, and Santa-Clara (2006) argue that this equation creates a volatil-

ity puzzle, with the exchange rate being not volatile enough. Typically observed

Sharpe ratios on domestic assets imply highly volatile SDFs, much more so than ex-

change rate depreciation. The mild correlation of macro quantities across countries

suggests that the SDFs are not correlated enough for the last term of equation (19)

to offset this high variance and obtain realistic exchange rate risk.

Further, the result (18) implies

vart(∆st+1) = covt(∆st+1,m
∗
t+1 −mt+1), (20)

and corrt(∆st+1,m
∗
t+1 − mt+1) = 1. Changes in exchange rates must be perfectly

correlated with relative marginal utilities of the domestic and foreign households,

that is, the home currency depreciates in relatively good times for home investors.

23



Figure 3: Proposition 1 in complete markets
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The figure illustrates implications of the complete market setting, labeled as CM, for the properties
of depreciation rates. The point labeled Data is a stylized representation of the evidence regard-
ing the depreciation rates. The grey area represents the infeasible combinations of volatility and
criticality of depreciation rates due to the Cauchy-Schwarz inequality.

As pointed out by Backus and Smith (1993), this implication is counterfactual for

various measures of good times leading to the cyclicality puzzle.

We introduce a visualization of these puzzles which we will revisit for other market

structures. Figure 3 demonstrates the tension in capturing volatility, on the vertical

axis, and cyclicality, on the horizontal axis, at once. The point labeled ‘Data’ is a

stylized representation of the empirically observed variance of depreciation rates and

basically absent cyclicality. Equation (20) implies that the complete markets case

should be on the 45◦ line. We select a point on the vertical axis that is equal to

vart(m
∗
t+1−mt+1) and, according to the volatility puzzle, is higher than vart(∆st+1)

that we see in the data.12 The point labeled ‘CM’ shows what the complete market

setting implies. The distance between Data and CM is the essence of the volatility

12The Cauchy-Schwarz inequality implies that

cov2t (∆st+1,m
∗
t+1 −mt+1) ≤ vart(∆st+1) · vart(m∗

t+1 −mt+1).
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and cyclicality puzzles in complete markets.

Moving onto the forward premium puzzle, consider the application of Proposition 2.

In the complete-market setting r̃rrt+1 and r̃rr∗t+1 span ∆̃st+1, and ψt = 0. The re-

sulting expected depreciation rate leads to the currency risk premium puzzle. The

risk premium for currency does generate deviations from uncovered interest par-

ity (UIP). Standard international models struggle with generating the empirically

observed magnitude of currency risk premium simultaneously with addressing the

first two puzzles.

Using the Euler equations, we can express rft−r∗ft in equation (13) in terms of SDFs.

As a result,

Et∆st+1 = Et(mt+1 −m∗
t+1).

The mean depreciation rate must equal the mean of the difference of stochastic

discount factors. Combining this equation with equation (18) we obtain the classic

“asset market view” result for exchange rates

m∗
t+1 −mt+1 = ∆st+1, (21)

which completely pins down the depreciation rate.

Interestingly, our derivation highlights that this result does not hinge on the classic

notion of market completeness. It requires neither integration of markets nor span-

ning of all states of the world. Indeed, it is enough to be able to span m̃∗
t+1 − m̃t+1

and ∆̃st+1 in each country in order to apply Propositions 1 and 2 and obtain the

We fix vart(m
∗
t+1 − mt+1) at the value indicated on the vertical axis. This leads us to a space

of mathematically feasible combinations of volatility and cyclicality. The grey area on the chart
indicates the infeasible combinations.
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complete-market result of equation (21). Such situations can arise in two cases.

First, the set of assets in each country is dense enough for the required spanning to

hold. We can think of this situation as a limiting case of projecting m̃∗
t+1− m̃t+1 and

∆̃st+1 on more and more rich set of assets until the R2 of the projections converge

to 1.

Second, the set of shocks in the economy that drive m∗
t+1−mt+1 and ∆st+1 is sparse

enough that there exist assets in both countries that allow to trade both the exchange

rate and the SDFs, even is the set of assets is not very dense. This situation may

occur in models where all equilibrium objects are driven by a few global macro

shocks ϵϵϵg, such as productivity or monetary policy.

3.2 The path towards resolving the complete-market puzzles

While the literature typically focuses on the three puzzles simultaneously, our Propo-

sitions suggest that forward premium puzzle, i.e., an empirical measure of the ex-

pected depreciation rate, is affected by different features of the financial markets as

compared to the cyclicality and volatility puzzles, which are driven by the properties

of the exchange rate innovations.

Proposition 2 offers a simple path towards resolving the forward puzzle. As long as

the underlying economic structure is such that the traded assets cannot span the

deprecation rate, there are no constraints whatsoever on what its expectation should

be. That opens a window to generating a theoretical currency premium that would

be consistent with the observed one.
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Proposition 1 and its application to complete markets implies that in order to resolve

the cyclicality and volatility puzzles, the share of global shocks in the economy must

be less than 100%. In order to assess how small this contribution should be, we

revisit the graphic representation of the two puzzles in Figure 3.

The following relation quantifies the trade-off between cyclicality and volatility

volatility︷ ︸︸ ︷
vart(∆st+1) ≥ var(gt+1) +

( cyclicality︷ ︸︸ ︷
covt(m

∗
t+1 −mt+1,∆st+1)−var(gt+1)

)2
vart(m∗

t+1 −mt+1)− var(gt+1)
, (22)

which is visualized by the red cones on Figure 1.13 According to Proposition 1,

the minimum variance of the exchange rate is var(gt+1); it is attained when the

cyclicality has the same value, covt(m
∗
t+1 − mt+1,∆st+1) = var(gt+1). This point

corresponds to the vertex of the parabola, which lies on the segment of the 45-degree

line between the origin and the complete markets point. To reduce cyclicality of

the exchange rate, one has to increase the variance of the exchange rate by adding

non-global components, which can have arbitrary correlation with the SDFs. This is

exactly what is captured by the inequality in equation (22), which corresponds to the

space inside of the parabola in the figure. Hence, if one starts with a macro-finance

model where the variance of the exchange rate is already too large relative to the

data, improving on cyclicality would further worsen the volatility puzzle.

Across models, the smaller is the role of global shocks, the larger is the space of

combination of volatility and cyclicality. Thus, in what follows, we discuss the ability

of various deviations from the complete-market setting to generate the requisite

amount of variation due to global shocks. Specifically, we consider various forms

13This relation is a consequence of the Cauchy-Schwartz inequality applied to the non-global
components of the exchange rate and SDF differential, (ℓt+1 + ut+1) and vt+1.
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of market integration, that is market structures in which at least some assets can

be traded in common by domestic and foreign household. In this interpretation

of the model, the absence of international arbitrage is a consequence of one of the

households having access to these commonly traded assets.

Subsequently, we remove all assumptions about integration: domestic investors trade

domestic assets while foreign investors trade foreign assets. It might seem that

such a setting would remove any constraint on the dynamics of the exchange rate.

But this is not necessarily the case: we maintain our assumption of the absence

of arbitrage opportunities in international markets. Intuitively, this implies that a

financial institution having access to both the domestic and foreign asset markets

should not be able to earn arbitrage profits. Figure 2C illustrates such a market.

This condition often arises in models where international financial trade is operated

by financial intermediaries.14

3.3 When global shocks play an important role

In this section we consider departures from market completeness where global shocks

are important contributors to the variables of interest. We focus on two cases. First,

we consider a version of partial market integration where a full set of AD securities

is not available, but global shocks explain the entire variation in the depreciation

rate. Second, we consider the case of intermediated markets where investors do not

trade any common assets, but global shocks explain the entire variation in priced

14While their decisions might be affected by various frictions, it is often assumed that they
could enter in arbitrage trade. For example, a risk-based constraint such as Value-at-Risk in Basel
requirements, does not penalize risk-free trades. Relatedly, theories of limits to arbitrage (Shleifer
and Vishny, 1997) often allow arbitrageurs to be unconstrained in engaging in risk-free trades.
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risks. The main takeaway is that in such economic scenarios one cannot make much

progress towards capturing the currency puzzles.

Integration. Assume that domestic and foreign investors can invest in the risk-

free asset of the other country. Lustig and Verdelhan (2019) focus on this setting,

which corresponds to rrrt+1 = {rft, r∗ft +∆st+1} and rrr∗t+1 = {r∗ft, rft −∆st+1}. Panel

A of Figure 4 illustrates this structure.

In this case, shocks to the depreciation rate ∆̃st+1 are spanned by both rrrt+1 and

rrr∗t+1, and are the only shocks therein. As such, Proposition 1 applies with respect to

this shock, which leads to

∆̃st+1 = proj(m̃∗
t+1 − m̃t+1|∆̃st+1), (23)

because the projection of the depreciation rate on itself is the depreciation rate,

global shocks explain 100% of the variation in the depreciation rate. Here ut+1 = 0

mechanically because the asset spanning the depreciation rate is the depreciation

rate itself, or, more precisely, the carry return on the strategy based on risk-free

assets. Therefore, the implication of Proposition 2 still coincides with the complete

markets case.

This result is reminiscent of using the difference in minimum-entropy SDFs to infer

the depreciation rate in fully integrated markets (e.g., Sandulescu, Trojani, and

Vedolin, 2020). In such a setting one necessarily uses the exchange rate to construct

the SDFs in each country, and, therefore, the result is the same as Equation (23).

However, these asset-based SDFs tell us nothing about how the SDFs appearing in

the puzzles, households’ intertemporal marginal rates of substitution, relate to the
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Figure 4: Volatility and cyclicality when the exchange rate is spanned
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The figure illustrates the trade-offs in matching volatility and cyclicality of the exchange rate. The
point labeled Data is a stylized representation of the evidence regarding the depreciation rates. The
point labeled CM represents the complete market setting where vart(∆st+1) = vart(m

∗
t+1−mt+1) =

covt(m
∗
t+1 − mt+1,∆st+1). The grey area represents the infeasible combinations of volatility and

cyclicality of depreciation rates due to the Cauchy-Schwarz inequality. We consider two scenar-
ios where both domestic and foreign households can trade the risk-free asset in another coun-
try. This allows both households to fully span the exchange rate via traded portfolios. The blue
lines show the feasible variance-cyclicality combinations in such a scenario. The variance bound,
V B = vart(proj(m

∗
t+1 −mt|r̃rrt+1, r̃rr

∗
t+1))

exchange rate.

Equation (13) with θt = 0 and equation (23) are also equivalent to the ones in

Proposition 1 of Lustig and Verdelhan (2019). Therefore, we concur with these

authors that one can make only limited progress in addressing the three exchange
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rate puzzles within such a market structure. Specifically,

vart(∆st+1) = vart(proj(m̃
∗
t+1 − m̃t+1|∆̃st+1)) ≤ vart(m

∗
t+1 −mt+1),

which potentially alleviates the volatility puzzle. Next, because the currency risk

premium is controlled by exactly the same equation as in the complete-markets

case, partial integration with two risk-free bonds does not help in resolving the FX

premium puzzle. As regards the cyclicality puzzle, the covariance of the depreciation

rate with the SDF differential must equal the variance of the exchange rate,

covt(∆st+1,m
∗
t+1 −mt+1) = covt(∆st+1, proj(m

∗
t+1 −mt+1|∆̃st+1)) = vart(∆st+1).

Therefore, just like in the complete markets case, there is a cyclicality puzzle.15 The

right graph in Figure 4A summarizes these constraints on the cyclicality and volatility

of the depreciation rate: the exchange must be on the 45-degree line segment between

the origin and the complete markets point.

Next, we show that the restrictions of this setting continue to hold as more assets,

either domestic or foreign, are bilaterally traded. Specifically, we allow for a broader

set of assets to be traded by both domestic and foreign households. This implies that

H = F = I — a structure represented in Panel B of Figure 4. Because these sets

include the risk-free bonds, the exchange rate is sill spanned, ut+1 = 0. Proposition 2

implies the same risk-premium result as in the complete-markets case.

15Having said that, the correlation between relative discount factors in the domestic and foreign
economies and depreciation rate is less than perfect:

corrt(m
∗
t+1 −mt+1,∆st+1) =

covt(m
∗
t+1 −mt+1,∆st+1)√

vart(m∗
t+1 −mt+1) · vart(∆st+1)

≤
covt(m

∗
t+1 −mt+1,∆st+1)

vart(∆st+1)
= 1.
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In this setting, the domestic household has access to assets with returns rrr∗t+1+∆st+1,

where the first element is r∗ft+∆st+1. Therefore, this household can trade rrr∗t+1−r∗ft by

going long risky assets and shorting the risk-free asset. Thus, the domestic household

can trade the same risks as the foreign one. The household can also isolate currency

risk from all other risks by trading this way. The same logic applies to the foreign

household’s ability to trade domestic risks. Proposition 1 then applies to all traded

risks, i.e., ϵϵϵgt+1 = (∆̃st+1, r̃rrt+1, r̃rr
∗
t+1).

Therefore, the projection of m∗
t+1 −mt+1 on the depreciation rate and asset returns

has a loading of one on the depreciation rate and zero on all other assets. Because it

is more stringent than the condition with only risk-free assets (equation (23)), this

relation still implies tht the cyclicality and variance of the exchange rate coincide.

It also adds a lower bound on the volatilty of the exchange rate:

vart(∆st+1) = vart(proj(m
∗
t+1 −mt|∆st+1, r̃rrt+1, r̃rr

∗
t+1))

≥ vart(proj(m
∗
t+1 −mt|̃rrrt+1, r̃rr

∗
t+1)).

The exchange rate must be more volatile than the projection of the SDF differential

on asset returns. As the risky returns span more and more states of the world, this

lower bound grows and we converge to the complete markets case. The right panel

of Figure 4B illustrates this additional restriction.

Thus, we conclude that bilateral trading in risk-free bonds imposes the critical re-

strictions on the depreciation rate. That is because trading these bonds amounts to

the ability for both households to trade in exchange rate itself, which leads to the

projection equation (23).
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Intermediated markets. We consider a particular case where all the risks affect-

ing returns and the SDFs are global. This corresponds to:

m∗
t+1 −mt+1 = gt+1 (24)

rank(vart(rrrt+1, rrr
∗
t+1)) = rank(vart(rrrt+1)) = rank(vart(rrr

∗
t+1)), (25)

i.e., there is no ϵϵϵt+1 or ϵϵϵ∗t+1. Such a situation would occur in a setting in which

the two economies are driven by the same set of shocks, although potentially with

different exposure to these shocks. For example, all variation could be driven by a

global financial cycle, with the U.S. more sensitive than other countries to this cycle.

In this case, Equation (10) of Proposition 1 simplifies to:

m̃∗
t+1 − m̃t+1 = proj(∆̃st+1|ϵϵϵgt+1) = gt+1, ℓt+1 = 0. (26)

The projection of the exchange rate on asset returns is equal to the difference between

stochastic discount factors. While this condition is reminiscent of the projection

relation with integrated risk-free asset markets, equation (23), the two are different

because the projection concerns the depreciation rate instead of the difference of

SDFs. Now it is a regression of the exchange rate depreciation on the difference of log

SDFs which yields a coefficient of 1. The unspanned component ut+1 is unbounded,

and Equation (26) implies:

vart(∆st+1) = vart(m
∗
t+1 −mt+1) + vart(ut+1) ≥ vart(m

∗
t+1 −mt+1).

This result deepens the volatility puzzle. If economies are entirely driven by global

shocks, exchange rate volatility can only be larger than in the complete market case.
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Figure 5: Exchange rate shocks with global shocks and intermediated markets
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The figure illustrates the trade-offs in matching volatility and cyclicality of the exchange rate. The
point labeled Data is a stylized representation of the evidence regarding the depreciation rates. The
point labeled CM represents the complete market setting where vart(∆st+1) = vart(m

∗
t+1−mt+1) =

covt(m
∗
t+1 − mt+1,∆st+1). The grey area represents the infeasible combinations of volatility and

cyclicality of depreciation rates due to the Cauchy-Schwarz inequality. We consider a scenario when
markets are intermdiated (as depicted in the left panel) and asset returns are subjected to global
shocks only. The red line shows the feasible variance-cyclicality combinations in such a scenario.

The cyclicality is not affected because Equation (26) implies:

covt(m
∗
t+1 −mt+1,∆st+1) = covt(gt+1, gt+1 + ut+1) = var(gt+1) = vart(m

∗
t+1 −mt+1).

We depict this situation in the right panel of Figure 5 via a vertical line emanat-

ing from CM (complete markets case). Global-only risks exacerbate the volatility-

cyclicality puzzles associated with the complete markets case.

3.4 When global shocks play a diminished role

In this section we continue with the partial market integration and intermediated

markets settings, but we allow the global shocks to play a smaller role in explaining

variation in the variables of interest (the depreciation rate, or priced risks). As we

show, such settings result in weaker connection between the SDFs and the deprecia-

tion rate, and have better chances of capturing the currency puzzles simultaneously.
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Figure 6: Exchange rate shocks across market structures
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The figure illustrates the trade-offs in matching volatility and cyclicality of the exchange rate. The
point labeled Data is a stylized representation of the evidence regarding the depreciation rates. The
point labeled CM represents the complete market setting where vart(∆st+1) = vart(m

∗
t+1−mt+1) =

covt(m
∗
t+1 − mt+1,∆st+1). The grey area represents the infeasible combinations of volatility and

cyclicality of depreciation rates due to the Cauchy-Schwarz inequality. We consider a scenario when
markets are partially integrated (as depicted in the left panel). The red line shows the feasible
variance-cyclicality combinations in such a scenario. The pink area inside of the cones depicts the
feasible combinations of volatility and cyclicality.

Partial integration. First, consider a setting where only the foreign risk-free bond

is tradeable by domestic and foreign households. Such a case arises often in the

context of sovereign bonds of emerging economies (H), which restrict participation

in their market to the investors of their domicile, but these investors are not prevented

from trading US bonds (F ). This case corresponds to rrrt+1 = {rft, r∗ft +∆st+1} and

rrr∗t+1 = {r∗ft}. The left graph of Figure 6A illustrates this structure.

Proposition 1 requires exposure to a set of common risks, which does not apply in
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this case. No-arbitrage requirement does not impose any constraints on the shocks

to the depreciation rate. Therefore, there is full flexibility to match the volatility

and cyclicality puzzles as displayed on the right graph of panel A.

In contrast, Proposition 2 applies precisely because the domestic household has access

to the carry trade (based on risk-free bonds). The carry portfolio is the spanning

portfolio in this case. Equation (13) implies the same risk premium from the domestic

perspective as in complete markets. However, its counterpart with foreign SDF in

equation (14) does not hold because the foreign household does not have access to

the carry trade. In this setting, the FX risk premium puzzle is unchanged, though

only present from the domestic perspective.

Now we extend the setup by allowing domestic and foreign households to trade both

domestic and foreign risky assets, see Panel B of Figure 6. The domestic household

can trade foreign risks and isolate currency risk from all other risks. The foreign

household, however, cannot separate out the currency risk because rft − ∆st+1 is

inaccessible.

Consider, for example, the case of one risky asset in each country: rrrt+1 =

(rft, r1,t+1, r
∗
ft + ∆st+1, r

∗
1,t+1 + ∆st+1), rrr

∗
t+1 = (r∗ft, r

∗
1t+1, r1,t+1 − ∆st+1). The for-

eign household can trade the risks in r∗1,t+1 and (r1,t+1 − ∆st+1). These risks are

accessible to the domestic household as well, so these constitute the set of global

shocks. However, there is no trade that can isolate the currency risk for the foreign

household. Even though the depreciation rate appears in the construction of global

shocks, there is no reason to believe that the projected depreciation rate would be

close to the actual one, in general.

With more risky assets, Proposition 1 applies with ϵϵϵgt+1 = r̃rr∗t+1. This leads to a set of
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tighter restrictions illustrated in Figure 6B, which are, nevertheless looser than the

cases considered in Section 3.3. We can apply Equation (22) to obtain the parabola

that is qualitatively similar to the ones displayed in Figure 1.

This result highlights the role of which assets are available for trading and reinforces

the importance of bilateral trading of risk-free assets for the emergence of the cycli-

cality and volatility puzzles. Comparing to Figure 4B, it is critical whether both

domestic and foreign households can gain exposure to the exchange rate risk. If they

can, then the range of feasible combinations of volatility and cyclicality is extremely

limited. Furthermore, the fewer risky assets one can trade, the lower is the vertex

of the parabola and the higher are the chances to capture the Data point within a

model.

Intermediated markets. Consider a case when the two economies are spanned

by a distinct set of shocks. While these shocks might be correlated, there is no

redundancy between domestic and foreign returns. This corresponds to the condition:

rank(vart(rrrt+1, rrr
∗
t+1)) = rank(vart(rrrt+1)) + rank(vart(rrr

∗
t+1)). (27)

In such a situation, ϵϵϵgt+1 is empty. Therefore, Proposition 1 applies to an empty set,

gt+1 = 0, and does not constrain the properties of the depreciation rate.

Shocks to the exchange rate, ℓt+1 and ut+1, can have an arbitrary variance and

correlation with the asset space. As a result, there is no force in the financial market

connecting ∆st+1 to m∗
t+1 −mt+1. The cyclicality and volatility puzzles do not have

to arise in this setting. The white parabola in the right panel of Figure 5 depicts

this scenario.
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While condition (27) is about the correlation structure of returns in each of the

countries, it connects naturally with the structure of shocks driving the home and

foreign economies. To see this, consider the case of the two economies being in

autarky on the real side (for example if the two countries consume different goods).

Suppose, all shocks to firm productivity and output in each country are driven by

vectors of shocks ϵϵϵt+1 and ϵϵϵ∗t+1 satisfying rank(vart(ϵϵϵt+1, ϵϵϵ
∗
t+1)) = rank(vart(ϵϵϵt+1)) +

rank(vart(ϵϵϵ
∗
t+1)). The lack of global real shocks implies the lack of global financial

shocks, i.e., condition (27) holds.

4 Empirical Analysis

In this section we investigate empirically whether a broad collection of asset returns

is informative about properties of the exchange rate. We limit the asset set in each

country to sovereign bonds and various stock portfolios of that country. There are

two interpretations of this choice. First, we ask the empirical question, irrespective of

market structure, of how much one can hope to learn about the behavior of exchange

rates from knowledge of the price of other assets in their origin currency. Second,

we are quantifying the restrictions imposed on the behavior of the exchange rate in

economies in which only intermediaries participate in international markets.

We first demonstrate that exchange rates appear to have a large component ut+1

unrelated to the returns of other traded assets. Then, we provide methods to char-

acterize global shocks. Both of these exercises lead to the conclusion that, for the

data we consider, other assets do not impose strong restrictions on the behavior of

exchange rates.
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4.1 Data

We consider countries corresponding to G10 currencies between 2/1988 and 12/2022.

We consider Germany as the representative country for the euro. Prior to the intro-

duction of the euro, we use the German Deutschemark and splice these series together

beginning in 1999. Our analysis focuses at the monthly frequency. We obtain ex-

change rates from WM/Reuters. Government bond yields are from each country’s

central bank websites. Monthly bond returns are computed from bond yields using a

second-order Taylor approximation. We obtain equity indices from MSCI. For each

country, 10 different industry indices and 3 different style equity indices (Large +

Mid Cap, Value, Growth) are sourced. Risk-free rates are calculated by dividing the

1-year yield by 12.

4.2 Is the exchange rate spanned?

Motivated by Proposition 2, we ask whether the depreciation rate is spanned by

combination of domestic and foreign asset returns. We implement regressions of the

form:

∆st+1 = α + β′rrrt+1 + β∗′rrr∗t+1 + ut+1. (28)

Here the residual ut+1 is a direct estimate of the unspanned component of the de-

preciation rate in equation (8).

We report the adjusted R2 of these regressions. Exact spanning corresponds to an

R2 of 1. Furthermore, Proposition 3 highlights that R2 is an appropriate measure of

economic distance to the case of perfect spanning.
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Table 1 reports the results. We always report the results for the combination of assets

in the United States and another country. Each column in the table corresponds to

that other country. Each row reflects a particular combination of assets used in

the regression. Broadly speaking, we consider bonds and equities separately and in

combination. Within each asset class, we zoom in on various individual contributions.

Table 1: Spanning of depreciation rates by asset returns – R2

Dependent Variable AU CA DE JP NO NZ SE CH UK

Bonds

10Y 0.25 0.33 7.49 5.36 4.73 1.05 4.79 4.01 0.92

All Maturities 7.23 7.89 15.72 10.15 13.66 5.67 13.95 11.52 13.65

Stocks

Mkt 21.67 26.56 6.96 4.44 11.24 16.56 16.20 12.34 12.71

Mkt + Value/Growth 21.60 27.98 6.75 5.06 12.47 17.16 15.91 12.71 13.68

Mkt + Value/Growth + Ind. 35.07 41.61 18.55 22.78 29.41 24.53 24.00 19.61 26.88

Bond + Equity 36.74 45.05 26.79 29.13 36.64 27.95 30.62 25.28 33.80

N 419 395 419 419 406 419 414 419 419

Notes: The table reports the adjusted R2 of a regression of the depreciation rate on various subsets

of asset returns, as in equation (28). Domestic asset returns are in domestic currency; foreign asset

returns are in foreign currency. Each column is a different country’s currency relative to the U.S.

dollar. The first row uses only 10-year bonds, while the second entertains maturities between 2 and

10 years, obtained from various central banks. The next three row successively add various stock

portfolios: the market (a combination of large and mid-cap stocks), value and growth portfolios,

and 10 industry portfolios, all from MSCI. The final row considers all assets simultaneously.

Major asset classes do not span exchange rates. When looking at all assets together,

the R2s range from 25% for Switzerland to 45% for Canada (in each case combined

with the U.S.). Most of the explanatory power comes from the equity side. For ex-

ample in the case of Canada, the combination of market, value, growth and industry

returns explain 42% of variation in the depreciation rate. While the market alone
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gets to some substantial amount of variation — 27% for Canada —, the addition of

industry returns is particularly informative. Consistent with the evidence in Cher-

nov and Creal (2023), bond returns only explain a modest amount of variation in

exchange rates: between 0.2% and 7% for the 10-year bond alone, and between 7.2%

and 14% for the combination of bonds at all maturities.

We refer to the observation that asset returns do not span changes in exchange

rates as the financial exchange rate disconnect. While the R2s we obtain from re-

gressions on asset returns are meaningfully larger than their counterpart with real

quantities, these magnitudes are much too small for leading to meaningful theoreti-

cal implications. Taking the strictest definition of absence of arbitrage, only a value

of 1 leads to the relevance of Proposition 2. According to Proposition 3, even the

largest numbers we measure imply a bound for the expected depreciation that is only
√
1− 0.45 = 67% of the bound with an R2 of 0, not much tighter. Thus, observ-

ing the properties of returns on other assets is not informative about the expected

currency depreciation rates.

The flipside of this conclusion is that the unspanned component of the depreciation

rates, ut+1, is large. In the context of models of intermediated markets, this result

offers more flexibility in capturing realistic currency risk premium. As we discussed in

section 3.4, partially integrated markets still imply tight restrictions on the currency

premium because Proposition 2 holds.

4.3 Identifying global shocks

In this section we quantify the importance of global shocks ϵgt+1, which play the key

role in Proposition 1. We do so using two empirical approaches. The undirected
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approach uses canonical correlation analysis (CCA) to identify these shocks from the

asset return data. The directed approach starts from candidates for global shocks

such as global macro and financial variables proposed in the literature.

4.3.1 Undirected approach

The CCA procedure finds a US and a foreign portfolio of asset returns consisting

of rrrt+1 and rrr∗t+1, respectively, such that they have the highest correlation possible

in sample. Next, conditional on finding this pair, the procedure looks for the next

maximally correlated pair of portfolios that are orthogonal to their first pair. And

so on.

According to Definition 1, global shocks would manifest themselves as innovations

to portfolios with perfect correlation. In that case, Proposition 1 implies that pro-

jections of the depreciation rate and the difference in the SDFs on the global shocks

coincide. In the data, even the largest correlation could be less than 1. So, in prac-

tice we would have to use an ad-hoc cut-off to decide which portfolios are sufficiently

close to each other to constitute a measure of a global shock.

Table 2 reports the results. Each column represents a foreign country. For a given

country, each row reports the canonical correlation between the assets of that country

and the US assets, reported in order of importance, starting from the largest.

The values of the largest correlations range from 64% for New Zealand to 90% for

Canada. In some cases lower ranked correlations are similar to the largest one, like

for Canada or the UK. In other cases, the magnitude of correlation drops off quickly,

e.g., for New Zealand or Norway. Strictly speaking, the evidence suggests that there

are no global shocks amongst the assets that we consider.
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Table 2: Maximally correlated shocks across asset markets

AU CA DE JP NO NZ SE CH UK

Rank 1 75.27 89.82 83.07 75.01 79.47 64.31 78.33 82.95 85.87

Rank 2 65.00 85.06 74.17 64.43 63.49 53.95 65.72 62.62 78.70

Rank 3 61.16 83.44 66.70 58.71 57.14 41.73 59.57 60.41 73.55

Rank 4 57.04 78.79 64.90 51.31 45.86 35.98 55.55 56.12 68.02

Rank 5 51.01 76.82 52.80 46.81 41.74 31.44 49.63 52.32 65.85

Rank 6 41.67 70.79 44.19 46.62 33.59 25.33 38.94 46.83 62.21

Rank 7 34.19 62.84 42.30 41.94 26.88 22.99 38.20 41.16 55.83

Rank 8 31.57 56.20 36.66 39.57 25.80 14.58 33.82 35.18 51.39

N 419 395 419 419 406 419 414 419 419

N otes: The table reports the correlation in % between the maximally correlated portfolios of asset

returns between the U.S. and each country. The successive pairs of portfolio are orthogonal to

each other, and obtained by canonical correlation analysis. Domestic asset returns are in domestic

currency; foreign asset returns are in foreign currency. Each column is for a different country’s

assets relative to the U.S. assets. The assets include government bonds of maturities between 2

and 10 years (obtained from various central banks) and various stock portfolios: the market (a

combination of large and mid-cap stocks), value and growth portfolios, and 10 industry portfolios

(from MSCI).
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As alluded to earlier, we can be more generous with interpreting the evidence in

Table 2 and assign a value of 1 to each estimated correlation that is above a certain

threshold. We consider the value of 60% as such a threshold. We denote the matrix

of foreign portfolio weights by www∗; if there is only one global shock, this is a vector.

We ask how much variation in the depreciation rate is explained by global shocks.

We implement regressions of the form:

∆st+1 = α + βg′(www∗′rrr∗t+1) + εt+1. (29)

The R2 of such a regression is the fraction variance in exchange rate explained by

global shocks. Because we assume that the corresponding domestic portfolio is per-

fectly correlated with its foreign counterpart, we do not include it in the regression.

The regression residual is a direct estimate of the contribution of local and unspanned

shocks to the depreciation rate, εt+1 = ℓt+1 + ut+1.

Combining with the results of regression (28), we can decompose variation in the de-

preciation rate into the contribution of global, local, and unspanned shocks. Specifi-

cally, we have var(βg′(www∗′rrr∗t+1)) for global shocks, and var(εt+1)− var(ut+1) for local

shocks. Figure 7 reports these quantities as fraction of the variation in depreciation

rate; the contributions mechanically add up to 1.

For all currencies, at least half of the variation in exchange rates is unspanned by asset

returns — the financial disconnect we have already noted. Global shocks contribute

very little to variation in the depreciation rates. The contribution is of the order of a

few percentage points, with the exception of Australia and Canada with contributions

around 25%. These estimates should be seen as an upper bound on the role of global

shocks; remember that estimated global shocks include any pair of portfolios with
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Figure 7: Decomposition of exchange rate innovations, undirected
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N otes: The figure reports the fraction of variance in exchange rates explained by globally traded
shocks, local shocks, and shocks that are not spanned by asset returns. Each bar is a different
country’s currency relative to the U.S. dollar. Global shocks are measured via returns of the assets
that we use in our analysis using CCA.

correlation above 60%, far from the strict Definition 1.

4.3.2 Directed approach

Instead of being agnostic about the nature of global shocks we rely on macroeconomic

research and assume that they are known. Specifically, we take VIX, GFC (Miranda-

Agrippino and Rey, 2020), and EBP (Gilchrist and Zakrajsek, 2012) as such shocks.
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This approach requires a strong assumption that portfolios of traded assets in each

economy can span these shocks.

For each country, we regress its depreciation rate vs USD on the global shocks. The

R2 from such a regression produce the fraction of the exchange rate variation due

to global shocks. Next, we implement the regression in Equation (28) where the

set of returns is complemented by the three global shocks to obtain the unspanned

component. Naturally, it is going to be smaller than that in the previous section.

The knowledge of the variation due to global and unspanned shocks delivers the

variation due to local shocks.

Figure 8 reports the resulting decomposition of the variation in the exchange rate

into the three types of shocks. The directed approach delivers somewhat larger

contribution of global shocks, but qualitatively the conclusions are unchanged. The

unspanned shocks represent the largest share of shocks. Contribution of the gloabl

shocks is modest with Australia and Canada, who approach 50%, being the exception.

Just like the financial disconnect leads to weak restrictions about the expected depre-

ciation rate, the small role of global shocks implies weak restrictions about exchange

rate risks. The flipside of this conclusion is that the settings of Section 3.4m which

have sizable exposure to local shocks relative to global shocks are capable of resolving

the cyclicality and volatility puzzles jointly. Given that partially integrated markets

still impose tight restrictions on the currency risk premium, the intermediated mar-

ket structure appears to be the most promising avenue for describing the equilibrium

behavior of the exchange rate.
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Figure 8: Decomposition of exchange rate innovations, directed
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N otes: The figure reports the fraction of variance in exchange rates explained by globally traded
shocks, local shocks, and shocks that are not spanned by asset returns. Each bar is a different
country’s currency relative to the U.S. dollar. Global shocks are measured via VIX, GFC, and
EBP.

5 Conclusion

In this paper, we propose a general framework for understanding how much financial

markets determine the behavior of exchange rates. Our theory accommodates many

settings: complete or incomplete markets, arbitrary forms of market integration,

or situations in which international financial trade happens through intermediaries.

We characterize restrictions on the behavior of exchange rates due to the absence of
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international arbitrage. These restrictions can be summarized by two conditions that

share the simplicity of the complete market result while having richer implications.

We use these results to study many different market structures. We find that in

theoretical settings where financial markets are informative about the exchange rate,

they lead to the same counterfactual implications as in complete markets. In contrast,

some structures, such as intermediated markets, do not impose much restrictions

on exchange rates. This lack of structure is consistent with two properties of the

data. First, there is a financial exchange rate disconnect: depreciation rates are

not that correlated to asset returns. Second, few shocks are globally traded, and

they explain even less of the variation in exchange rates. Thus, we conclude that

intermediated market structures are the most promising avenues for modeling the

equilibrium exchange rate.
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Appendix

A Identification and construction of the global

shocks

We show how to identify a basis for the set of global shocks ϵϵϵgt+1. We drop time
indices for parsimony.

First, recall what canonical correlation analysis does.

Definition 2. Canonical correlation analysis identifies pairs (λλλi,λλλ
∗
i ) for i = 1, . . . , K

for some K such that:

1. ∀i var(λλλ′irrr) ̸= 0

2. ∀i λλλ′irrr = λλλ∗′i rrr
∗

3. ∀i ̸= j λλλ′irrr ⊥ λλλ′jrrr

4. ∀r ∈ span(rrr), r∗ ∈ span(rrr∗) if ∀i r ⊥ λλλ′irrr and r∗ ⊥ λλλ′irrr then r ̸= r∗

Then we show that this procedure identifies a basis of ϵϵϵg.

Lemma 1. The collection (λλλ′1rrr, . . .λλλ
′
Krrr) identified by canonical correlation analysis

is a basis of ϵϵϵg.

Proof. By point 2 of Definition 2, all the λλλ′irrr are in ϵϵϵ
g. Thus, span(λλλ′1rrr, . . .λλλ

′
Krrr) ⊂ ϵϵϵg.

Let us show the other direction. Assume that there exists r ∈ ϵϵϵg such that r /∈
span(λλλ′1rrr, . . .λλλ

′
Krrr). We can orthogonalize r to all the λλλ′irrr and obtain r̂. Because r̂ is

a linear combination of r and λλλ′irrr which are all in ϵϵϵg, it is also in ϵϵϵg, and therefore in
span(rrr) and span(rrr∗). By substituting r̂ for both r and r∗ in point 4 of Definition 2,
we immediately obtain a contradiction. Therefore span(λλλ′1rrr, . . .λλλ

′
Krrr) ⊃ ϵϵϵg; the two

sets are equal. By point 3 of the CCA definition, dim(span(λ′1r, . . . λ
′
Kr)) = K, so

(λ′1r, . . . λ
′
Kr) is indeed a basis of ϵϵϵg. ■

Furthermore, we relate the dimension of ϵϵϵg to the rank of covariance matrices of rrr,
rrr∗, and the two combined.
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Lemma 2. The dimension of ϵϵϵg is:

dim(ϵϵϵg) = rank(var(rrr)) + rank(var(rrr∗))− rank(var(rrr, rrr∗)).

Proof. Observe that, by construction,

dim(span(rrr, rrr∗)) = [dim(span(ϵϵϵg)) + dim(span(ϵϵϵ))] + {dim(span(ϵϵϵ∗))}
= [dim(span(rrr))] + {dim(span(rrr∗)− dim(ϵϵϵg))}.

Therefore,

dim(ϵϵϵg) = dim(span(rrr)) + dim(span(rrr∗))− dim(span(rrr, rrr∗)),

which yields the result. ■

B Derivation of the main results

B.1 Portfolio approximation

To maintain tractability, we follow Campbell and Viceira (2002) and approximate
the log portfolio excess returns relative to a risk-free rate rft:

rp,t+1 − rft = log
(
www′

te
rrrt+1−rftιιι

)
≈ www′

t(rrrt+1 − rftιιι) +
1

2
www′

t diag(ΣΣΣt)−
1

2
www′

tΣΣΣtwwwt, (30)

where ΣΣΣt is the variance-covariance matrix of log returns. This approximation allows
us to represent portfolios returns as linear combination of log returns. Importantly,
it is stable by recombination, leading to the same result when applied in two steps
or all at once for a portfolio of portfolios.

B.2 Two international portfolios

Two international portfolios are useful for the derivation of our main results.
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Carry trade. One zero-cost portfolio, often referred to as carry, entails taking long
and short positions in related assets:

Rcarry,t+1 = Rt+1 −R∗
t+1 · St+1/St. (31)

Traditionally, the traded assets are taken to be domestic and foreign risk-free (one-
period) bonds. But carry does not have to be limited by that. For instance, Lustig,
Stathopoulos, and Verdelhan (2013) consider long-term bonds. More generally, one
could use any pair of assets that are close to each other, e.g., corrt(rt+1, r

∗
t+1) ≈ 1.

The key characteristic of the carry trade is that it exposes the arbitrageur to currency
risk.

Lemma 3. The conversion from foreign to home returns in the carry portfolio in-
troduces exposure to currency risk, r̃carry,t+1 = r̃t+1 − r̃∗t+1 + ∆̃st+1.

Proof. We map the zero-cost portfolio (31) into the log approximation of a funded
portfolio in equation (30) by adding a position in the risk-free asset:

Rp,t+1 ≡ Rcarry,t+1 +Rf,t = Rt+1 −R∗
t+1 · St+1/St +Rf,t.

The portfolio Rp,t+1 corresponds to the weights w1 = 1 in the domestic risky asset
Rt+1, w2 = −1 in the foreign risky asset converted to USD, R∗

t+1 · St+1/St, and
w3 = 1 in the domestic risk-free asset with wwwt = (w1, w2, w3)

′. These weights lead to
an expression for the log gross return relative to the risk-free rate Rp,t+1/Rf,t:

rcarry,t+1 ≡ rp,t+1 − rft

= rt+1 − r∗t+1 −∆st+1 + covt(rt+1 − r∗t+1 −∆st+1, r
∗
t+1 +∆st+1). (32)

Thus, the shocks to the exchange rate have an impact on the portfolio performance.
■

Differential carry. That carry is exposed to currency risk prompts us to consider
another zero-cost portfolio, labeled as differential carry, which is long one unit of the
domestic asset, and short one unit of the foreign asset, financed at the respective
risk-free rates:

Rdiff,t+1 = (Rt+1 −Rft)− (R∗
t+1 −R∗

ft) · St+1/St. (33)
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Intuitively, this portfolio does not introduce additional currency exposure because, in
contrast to carry, only the foreign excess return is converted to USD. We demonstrate
this formally in the following lemma.

Lemma 4. The conversion from foreign to US returns in the diff portfolio does not
introduce additional exposure to currency risk, r̃diff,t+1 = r̃t+1 − r̃∗t+1.

Proof. We map the zero-cost portfolio (33) into a funded portfolio to use the ap-
proximation of equation (30):

Rp,t+1 ≡ Rdiff,t+1 +Rf,t = Rt+1 − (R∗
t+1 −R∗

ft) · St+1/St.

The portfolio Rp,t+1 corresponds to the weights w1 = 1 in the domestic risky asset
Rt+1, w2 = −1 in the foreign risky asset converted to USD, R∗

t+1 ·St+1/St, and w3 = 1
in the foreign risk-free asset converted to USD, R∗

ft ·St+1/St, with wwwt = (w1, w2, w3)
′.

These weights lead to an expression for the relative log return:

rdiff,t+1 ≡ rp,t+1 − rft

= rt+1 − rft − (r∗t+1 − r∗ft)− covt(r
∗
t+1,∆st+1) + covt(r

∗
t+1, rt+1 − r∗t+1). (34)

Thus, only the covariance of the foreign return with the exchange rate has a material
impact on portfolio performance, not the shocks to the exchange rate. ■

The disappearance of exchange rate risk for the diff returns is in part due to our port-
folio approximation. In Appendix Section D, we confirm that this approximation is
very tight empirically. We compare the excess returns on various stock portfolios and
sovereign bonds in their origin currency and in converted currency. The correlation
between the two monthly series is always around 99.9%.

B.3 Proof of Proposition 1

Consider one of the global shocks, ϵgt+1. By definition 1, there exist two portfolios
rp,t+1 ∈ rrrp,t+1 and r∗p,t+1 ∈ rrr∗p,t+1 such that ϵgt+1 = r̃p,t+1 = r̃∗p,t+1.

The differential carry portfolio of Lemma 4 is in rrrIp,t+1. In this case, the portfolio has
no risk because r̃p,t+1 = r̃∗p,t+1. The shocks to foreign and domestic return perfectly
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offset each other. By assumption 2, the portfolio must have expected returns equal
to the risk-free rate. That is:

0 = Et[rp,t+1 − rft]− Et[r
∗
p,t+1 − r∗ft]− covt(r

∗
p,t+1,∆st+1) + covt(r

∗
p,t+1, rp,t+1 − r∗p,t+1).

The last term is equal to 0 because rp,t+1 − r∗p,t+1 has no risk. We can replace the
first two terms by covariances with the SDFs using the domestic and foreign Euler
equations (5) and (6),

0 = −covt(mt+1, rp,t+1)−
1

2
vart(rp,t+1) + covt(m

∗
t+1, r

∗
p,t+1) +

1

2
vart(r

∗
p,t+1)

− covt(r
∗
p,t+1,∆st+1).

Remembering that both portfolio shocks are equal to ϵgt+1, this expression simplifies
to:

covt(m
∗
t+1 −mt+1 −∆st+1, ϵ

g
t+1) = 0.

This equation is equivalent to

cov(m̃∗
t+1 − m̃t+1 − ∆̃st+1, ϵ

g
t+1) = 0,

which under log-normality implies equation (10).

Because this result holds for any global shock, it must also hold in terms of multi-
variate projections on all global shocks ϵϵϵgt+1. ■

B.4 Proof of Proposition 2

Consider the carry portfolio of Lemma 3 constructed with a pair of portfolios rp,t+1 ∈
rrrp,t+1 and r∗p,t+1 ∈ rrr∗p,t+1 which span the exchange rate (equation (9)). In this case,

the portfolio has no risk because r̃p,t+1 − r̃∗p,t+1 = ∆̃st+1. The shocks to foreign and
domestic return perfectly offset exchange rate risk. By assumption 2, the portfolio
must have expected returns equal to the risk-free rate. This corresponds to

0 = Et[rp,t+1 − r∗p,t+1 −∆st+1] + covt(rp,t+1 − r∗p,t+1 −∆st+1, r
∗
p,t+1 +∆st+1).

The covariance term is equal to 0, because rp,t+1 = r∗p,t+1 − ∆st+1 has no risk. We
can replace expected returns using the domestic and foreign Euler equations (5) and
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(6):

Et[∆st+1] = rft − covt(mt+1, rp,t+1)−
1

2
vart(rp,t+1)

− r∗ft + covt(m
∗
t+1, r

∗
p,t+1) +

1

2
vart(r

∗
p,t+1) = δt

We replace r̃p,t+1 = r̃∗p,t+1 + ∆̃st+1:

Et[∆st+1] = rft − r∗ft − covt(mt+1,∆st+1) + covt(m
∗
t+1 −mt+1, r

∗
p,t+1)

+
1

2
vart(r

∗
p,t+1)−

1

2
vart(∆st+1)−

1

2
vart(r

∗
p,t+1)− covt(∆st+1, r

∗
p,t+1)

= rft − r∗ft − covt(mt+1,∆st+1)−
1

2
vart(∆st+1)

+ covt(m
∗
t+1 −mt+1 −∆st+1, r

∗
p,t+1).

This proves part b) of Proposition 2. If markets are fully integrated, all asset returns
are global shocks, and proposition 1 implies that the last term in the equation above
is equal to 0, part a) of the proposition. If the exchange rate is not spanned by
asset returns, it is impossible to construct a trade with expected returns involving
the expected depreciation rate that is risk-free. Therefore, no arbitrage imposes no
restriction on the expected deprectiation rate. ■

B.5 Proof of Proposition 3

Recall our decomposition of the depreciation rate into a spanned and unspanned
components, ∆st+1 = Et(∆st+1)+gt+1+ℓt+1+ut+1. Because gt+1+ℓt+1 is spanned by
asset returns, there exists rp,t+1 ∈ rrrp,t+1 and r

∗
p,t+1 ∈ rrr∗p,t+1 such that r̃p,t+1 − r̃∗p,t+1 =

gt+1+ℓt+1. Using Lemma 3, we see that the risk of this portfolio is equal to vart(ut+1).
We apply Assumption 3 to relate this risk to the expected return of the carry trade.∣∣∣∣Et[rp,t+1 − r∗p,t+1 −∆st+1] + covt(rp,t+1 − r∗p,t+1 −∆st+1, r

∗
p,t+1 +∆st+1) +

1

2
vart(ut+1)

∣∣∣∣
≤ B

√
vart(ut+1)
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Examining the terms in the left-hand-side, we have:

Et[rp,t+1 − r∗p,t+1 −∆st+1] = δt − Et[∆st+1] = −ψt

covt(rp,t+1 − r∗p,t+1 −∆st+1, r
∗
p,t+1 +∆st+1) = covt(−ut+1, rp,t+1 + ut+1)

= −vart(ut+1)

Plugging back into the inequality, we obtain:

|ψt +
1

2
vart(ut+1)| ≤ B

√
vart(ut+1).

■

C Propositions 1 and 2 are sufficient

We show that the results of Propositions 1 and 2 are not only necessary for the
absence of international arbitrage — Assumption 2 — but also sufficient. Specifically
we show the following.

Proposition 4. If:

1. Assumption 1 holds,

2. E
(
m̃∗

t+1 − m̃t+1|ϵgt+1

)
= E

(
∆̃st+1|ϵgt+1

)
,

3. (a) Either ∃rsp,t+1 ∈ rrrp,t+1, r
s∗
p,t+1 ∈ rrr∗p,t+1 such that ∆̃st+1 = r̃sp,t+1 − r̃s∗p,t+1 and

Et (∆st+1) = rf,t − r∗f,t − covt(m
∗
t+1,∆st+1) +

1

2
vart(∆st+1)

+ covt
(
m∗

t+1 −mt+1 −∆st+1, rp,t+1

)
,

(b) Or ∀rsp,t+1 ∈ rrrp,t+1, r
s∗
p,t+1 ∈ rrr∗p,t+1, ∆̃st+1 ̸= r̃sp,t+1 − r̃s∗p,t+1

then there are no arbitrage opportunities in international markets, Assumption 2
holds.
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Proof. We proceed by contradiction. Assume that there exists an international
arbitrage:

∃rIp,t+1 ∈ rrrIp,t+1, vart(r
I
p,t+1) = 0 and Et

(
rIp,t+1

)
̸= rft,

and denote www and www∗ the set of weights of such a portfolio on rrrt+1 and rrr
∗
t+1. Remem-

ber that 1′www + 1′www∗ = 1. We consider the cases of 3a and 3b in turn.

Assume condition 3a holds. As a preliminary, note that this condition is equivalent
to saying that a carry portfolio constructed with rsp,t+1 and rs∗p,t+1 has no risk and
no average return in excess of the risk-free rate. Consider the following portfolio:
long www′rrrt+1, long (1′w∗) rsp,t+1, long w

∗′ (r∗t+1 +∆st+1

)
, short (1′w∗) rs∗p,t+1. Because

we have added and subtracted the same total weights, the new weights still add
up to 1, so this is still a portfolio. Because this portfolio combines two risk-free
portfolio, our assumed arbitrage and the risk-free carry trade, its expected return is
the sum of the two expected returns, Et

(
rIp,t+1

)
. The total weight on foreign in the

portfolio are 1′www∗ − 1′www∗ = 0. Therefore, this trade is a differential carry portfolio.
Because it has no risk, its home and foreign leg offset each other. They form a global
shock. Applying condition 1 in the proposition and Lemma 4 leads immediately to
the result that the portfolio return must equal the risk-free rate. This contradicts
the assumption that Et

(
rIp,t+1

)
̸= rf,t.

Now assume that condition 3b holds. If 1′www∗ ̸= 0, then the arbitrage portfolio has a
non-zero loading on ∆st+1 in addition to the home and foreign returns. Because the
portofolio is riskless this implies that we can find a pair of home and foreign returns
that spans the depreciation rate, a contradiction of condition 3b. If 1′www∗ = 0, then
the two legs of the portfolio in their home currency perfeclty offset each other. Their
innovations constitute a global shock and applying condition 1 in the proposition
jointly with Lemma 4 implies that the arbitrage portoflio has 0 expected return, a
contradiction as well.

D Evaluating the portfolio approximation

We report the correlation (in %) between the excess return on various stock portfolios
—Table 3— and bonds of different maturities —Table 5— in their origin currency
and converted to U.S. dollars. Tables 4 and 6 start from the U.S. version of these
portfolios and converts them to foreign currency. These correlations are pervasively
extremely high, almost all over 99.9%.
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Table 3: Correlation between excess returns converted in different currencies: foreign
stocks

AU CA DE JP NO NZ SE CH UK

Market 99.88 99.91 99.93 99.96 99.88 99.89 99.91 99.94 99.94

Value 99.92 99.94 99.93 99.96 99.89 99.85 99.92 99.93 99.94

Growth 99.82 99.88 99.93 99.96 99.9 99.93 99.92 99.95 99.94

Oil, Gas, Coal 99.89 99.93 NA 99.96 99.92 99.92 99.93 NA 99.96

Basic Material 99.84 99.94 99.94 99.95 99.88 99.91 99.91 99.96 99.91

Consumer Discretionary 99.91 99.95 99.93 99.96 99.92 99.94 99.94 99.93 99.96

Consumer Products, Services 99.88 99.96 99.97 99.95 NA NA 99.94 99.93 99.98

Industrials 99.90 99.91 99.94 99.95 99.89 99.92 99.92 99.94 99.94

Health Care 99.91 99.97 99.96 99.96 NA 99.91 99.93 99.96 99.97

Financials 99.92 99.95 99.94 99.96 99.89 99.93 99.91 99.93 99.92

TeleCom 99.92 99.95 99.96 99.96 99.92 99.84 99.93 99.94 99.96

Technology 99.91 99.88 99.96 99.96 99.86 NA 99.94 99.95 99.95

Utilities 99.93 99.91 99.94 99.97 NA 99.93 NA 99.95 99.97

N otes: The table reports the correlation (in %) between the excess return on various stock indices

expressed in their home currency and converted to U.S. dollar. The portfolios include the market (a

combination of large and mid-cap stocks), value and growth portfolios, and 10 industry portfolios,

all from MSCI. Each column corresponds to a different country.
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Table 4: Correlation between excess returns converted in different currencies: U.S.
stocks

AU CA DE JP NO NZ SE CH UK

US Market 99.88 99.94 99.95 99.96 99.87 99.90 99.92 99.94 99.94

US Value 99.90 99.95 99.96 99.96 99.87 99.91 99.92 99.95 99.95

US Growth 99.87 99.93 99.94 99.96 99.88 99.90 99.92 99.94 99.94

US Oil, Gas, Coal 99.90 99.96 99.97 99.98 99.92 99.92 99.94 99.96 99.96

US Basic Material 99.81 99.90 99.92 99.95 99.85 99.88 99.90 99.93 99.93

US Consumer Discretionary 99.91 99.95 99.95 99.96 99.9 99.91 99.92 99.95 99.95

US Consumer Products, Services 99.93 99.97 99.97 99.97 99.92 99.93 99.94 99.96 99.96

US Industrials 99.86 99.93 99.94 99.96 99.84 99.90 99.90 99.94 99.94

US Health Care 99.90 99.96 99.95 99.96 99.88 99.93 99.93 99.95 99.96

US Financials 99.91 99.95 99.95 99.94 99.87 99.93 99.91 99.92 99.94

US TeleCom 99.87 99.93 99.95 99.95 99.9 99.91 99.93 99.96 99.95

US Technology 99.88 99.93 99.94 99.96 99.89 99.91 99.92 99.94 99.94

US Utilities 99.84 99.92 99.94 99.96 99.85 99.88 99.91 99.96 99.94

N otes: The table reports the correlation (in %) between the excess return on various stock indices

expressed in the U.S. dollars and converted to foreign currency. The portfolios include the market (a

combination of large and mid-cap stocks), value and growth portfolios, and 10 industry portfolios,

all from MSCI. Each column corresponds to a different country.
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Table 5: Correlation between excess returns converted in different currencies: foreign
bonds

AU CA DE JP NO NZ SE CH UK

2Y Bond 99.86 99.97 99.92 99.97 NA 99.85 99.91 99.91 99.95

3Y Bond 99.86 99.97 99.92 99.97 99.91 NA NA 99.93 99.96

4Y Bond NA 99.97 99.93 99.97 NA NA NA 99.94 99.96

5Y Bond 99.87 99.97 99.93 99.97 99.91 99.85 99.91 99.93 99.96

6Y Bond NA 99.96 99.93 99.97 NA NA NA 99.92 99.96

7Y Bond NA 99.96 99.93 99.96 NA NA 99.91 99.91 99.96

8Y Bond NA 99.96 99.92 99.96 NA NA NA 99.90 99.96

9Y Bond NA 99.96 99.92 99.96 NA NA NA 99.89 99.96

10Y Bond 99.87 99.96 99.93 99.96 99.91 99.88 99.91 99.88 99.96

N otes: The table reports the correlation (in %) between the excess return on government bonds of

different maturity expressed in their home currency and converted to U.S. dollars. Bond returns

are constructed from yields obtained from each country’s central bank. Each column corresponds

to a different country.
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Table 6: Correlation between excess returns converted in different currencies: U.S.
bonds

AU CA DE JP NO NZ SE CH UK

US 2Y Bond 99.9 99.95 99.95 99.97 99.91 99.93 99.95 99.93 99.96

US 3Y Bond 99.91 99.96 99.95 99.97 99.92 99.93 99.95 99.92 99.96

US 4Y Bond 99.92 99.96 99.94 99.96 99.92 99.94 99.95 99.91 99.96

US 5Y Bond 99.91 99.97 99.93 99.96 99.91 99.94 99.95 99.89 99.95

US 6Y Bond 99.91 99.97 99.93 99.96 99.89 99.94 99.94 99.88 99.95

US 7Y Bond 99.9 99.96 99.92 99.96 99.88 99.94 99.94 99.86 99.95

US 8Y Bond 99.89 99.96 99.91 99.96 99.86 99.93 99.93 99.85 99.95

US 9Y Bond 99.88 99.96 99.9 99.96 99.85 99.93 99.93 99.84 99.95

US 10Y Bond 99.88 99.96 99.9 99.96 99.84 99.93 99.92 99.83 99.94

N otes: The table reports the correlation (in %) between the excess return on U.S. government

bonds of different maturity expressed in U.S.. dollars and converted to foreign currency. Bond

returns are constructed from yields obtained from the Federal Reserve. Each column corresponds

to a different country.
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