What Drives the Exchange Rate?

OLEG ITSKHOKI itskhoki@econ.UCLA.edu DMITRY MUKHIN d.mukhin@LSE.ac.uk

- Prequel to: "Exchange Rate Disconnect in General Equilibrium"
- Inspired by:
 - Meese and Rogoff (1983)
 - 2 Rogoff (1996)
 - Obstfeld and Rogoff (2001)
 - 6 Ken's doctoral course in International Macro

- Prequel to: "Exchange Rate Disconnect in General Equilibrium"
- Inspired by:
 - Meese and Rogoff (1983)
 - 2 Rogoff (1996)
 - Obstfeld and Rogoff (2001)
 - 6 Ken's doctoral course in International Macro

- Exchange rates offer some of the most pervasive and challenging puzzles in macroeconomics and macro-finance
 - exchange rates feature in all international macro and finance models
 - exchange rates are key to macroeconomic policy in open economies
 - yet, almost any moment with exchange rate is a named puzzle!

- Exchange Rate Disconnect (Messe & Rogoff 1983, Engel & West 2005) $\mathbb{E}\{\Delta e_{t+1}|y_{t+1}, y_t, ...\} \approx 0 \text{ and } \operatorname{var}_t(\Delta e_{t+1}) \gg \operatorname{var}_t(\Delta y_{t+1})$
 - + there financial disconnect puzzles: volatility (BCSC 2006), cyclicality (BS 1993), and FX premium (Fama 1984)

- Exchange Rate Disconnect (Messe & Rogoff 1983, Engel & West 2005) $\mathbb{E}\{\Delta e_{t+1}|y_{t+1}, y_t, ...\} \approx 0$ and $\operatorname{var}_t(\Delta e_{t+1}) \gg \operatorname{var}_t(\Delta y_{t+1})$
 - + there financial disconnect puzzles: volatility (BCSC 2006), cyclicality (BS 1993), and FX premium (Fama 1984)
- PPP Puzzle (Rogoff 1996, CKM 2002)

 $\Delta q_t pprox \Delta e_t, \quad ext{where} \quad q_t = e_t + p_t^* - p_t$

- Exchange Rate Disconnect (Messe & Rogoff 1983, Engel & West 2005) $\mathbb{E}\{\Delta e_{t+1}|y_{t+1}, y_t, ...\} \approx 0 \text{ and } \operatorname{var}_t(\Delta e_{t+1}) \gg \operatorname{var}_t(\Delta y_{t+1})$
 - + there financial disconnect puzzles: volatility (BCSC 2006), cyclicality (BS 1993), and FX premium (Fama 1984)
- PPP Puzzle (Rogoff 1996, CKM 2002)

 $\Delta q_t pprox \Delta e_t, \quad ext{where} \quad q_t = e_t + p_t^* - p_t$

Sackus-Smith Puzzle (Backus & Smith 1993, Kollmann 1995, CDL 2008) $\operatorname{corr}(\Delta q_t, \Delta c_t - \Delta c_t^*) \lesssim 0$

- Exchange Rate Disconnect (Messe & Rogoff 1983, Engel & West 2005) $\mathbb{E}\{\Delta e_{t+1}|y_{t+1}, y_t, ...\} \approx 0 \text{ and } \operatorname{var}_t(\Delta e_{t+1}) \gg \operatorname{var}_t(\Delta y_{t+1})$
 - + there financial disconnect puzzles: volatility (BCSC 2006), cyclicality (BS 1993), and FX premium (Fama 1984)
- PPP Puzzle (Rogoff 1996, CKM 2002)

 $\Delta q_t pprox \Delta e_t, \quad ext{where} \quad q_t = e_t + p_t^* - p_t$

Sackus-Smith Puzzle (Backus & Smith 1993, Kollmann 1995, CDL 2008) $\operatorname{corr}(\Delta q_t, \Delta c_t - \Delta c_t^*) \lesssim 0$

• UIP and Forward Premium Puzzles (Fama 1984, Engel 2016; also CIP) $\Delta e_{t+1} = \alpha_F + \beta_F (i_t - i_t^*) + \varepsilon_t \quad \Rightarrow \quad \beta_F < 0, \ R_F^2 \approx 0$

- Exchange Rate Disconnect (Messe & Rogoff 1983, Engel & West 2005) $\mathbb{E}\{\Delta e_{t+1}|y_{t+1}, y_t, ...\} \approx 0 \text{ and } \operatorname{var}_t(\Delta e_{t+1}) \gg \operatorname{var}_t(\Delta y_{t+1})$
 - + there financial disconnect puzzles: volatility (BCSC 2006), cyclicality (BS 1993), and FX premium (Fama 1984)
- PPP Puzzle (Rogoff 1996, CKM 2002)

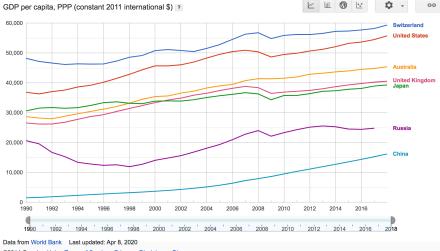
 $\Delta q_t pprox \Delta e_t, \quad ext{where} \quad q_t = e_t + p_t^* - p_t$

Sackus-Smith Puzzle (Backus & Smith 1993, Kollmann 1995, CDL 2008) $\operatorname{corr}(\Delta q_t, \Delta c_t - \Delta c_t^*) \lesssim 0$

• UIP and Forward Premium Puzzles (Fama 1984, Engel 2016; also CIP) $\Delta e_{t+1} = \alpha_F + \beta_F (i_t - i_t^*) + \varepsilon_t \quad \Rightarrow \quad \beta_F < 0, \ R_F^2 \approx 0$

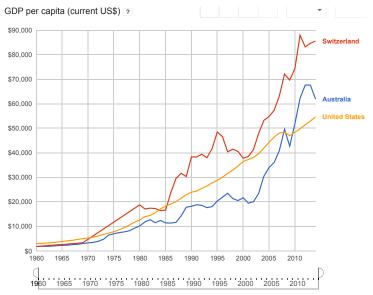
Mussa Puzzle (Mussa 1986, Baxter & Stockmann 1989)

1. Growth and Development



©2014 Google - Help - Terms of Service - Privacy - Disclaimer - Discuss

1. Growth and Development

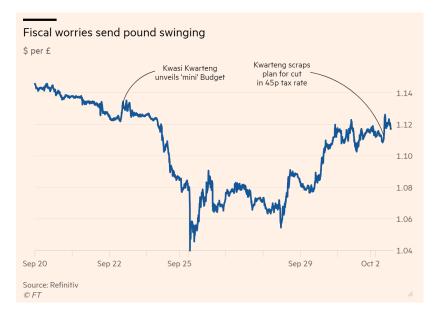


Data from World Bank Last updated: Jan 12, 2016

2. The British Pound I: BREXIT

GBP/USD (GBPUSD=X) 1.3304 -0.0047 (-0.3499%) As of 10:16 AM EDT. CCY Delayed Price. Market open.

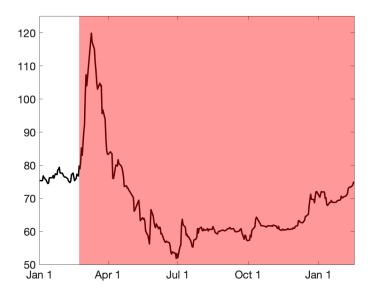
2. The British Pound II: 2022 Fiscal Panic



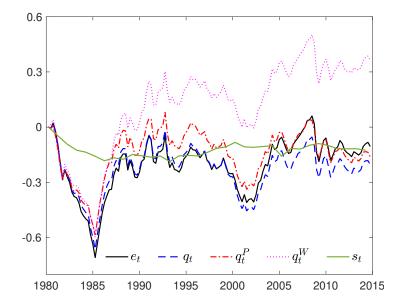
3. Abenomics and the Japanese yen

Powered by TradingView

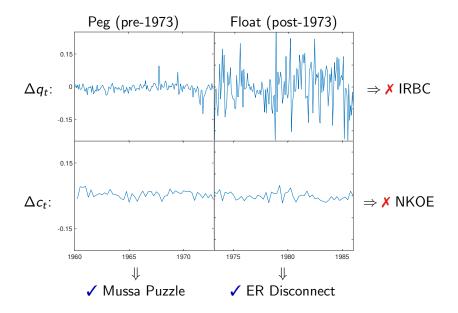
4. Sanctions and the ruble



Real Exchange Rate and PPP



ER Disconnect and Mussa Puzzle



Disconnect in the Limit

- Trade autarky: a model of complete exchange rate disconnect
 - What is the exchange rate between the Earth and the Moon?

Disconnect in the Limit

- Trade autarky: a model of complete exchange rate disconnect
 - What is the exchange rate between the Earth and the Moon?
- ϵ trade openess:
 - exchange rate uniquely determined by fundamentals
 - can ER be an order of magnitude more volatile than macro variables?
 - Meese-Rogoff disconnect
 - 2 PPP Puzzle: $\Delta q_t = \pi_t^* + \Delta e_t \pi_t$

Disconnect in the Limit

- Trade autarky: a model of complete exchange rate disconnect
 - What is the exchange rate between the Earth and the Moon?
- ϵ trade openess:
 - exchange rate uniquely determined by fundamentals
 - can ER be an order of magnitude more volatile than macro variables?

Meese-Rogoff disconnect

2 PPP Puzzle: $\Delta q_t = \pi_t^* + \Delta e_t - \pi_t$

- Further away from trade autarky, less disconnect
- Study the behavior of economies around the autarky limit as the diagnostic tool for modeling disconnect

- using CKM-style business cycle "wedge" accounting

MODELING SETUP

• Home households solve:

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t e^{\chi_t} \left(\frac{1}{1-\sigma} C_t^{1-\sigma} - \frac{e^{\kappa_t}}{1+1/\varphi} L_t^{1+1/\varphi} \right)$$

 $P_tC_t + \sum_{j \in J_t} \Theta_t^j B_{t+1}^j \leq \sum_{j \in J_{t-1}} e^{-\psi_t^j} (\Theta_t^j + \mathcal{D}_t^j) B_t^j + W_t L_t + \Pi_t + T_t$

• Home households solve:

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t e^{\chi_t} \left(\frac{1}{1-\sigma} C_t^{1-\sigma} - \frac{e^{\kappa_t}}{1+1/\varphi} L_t^{1+1/\varphi} \right)$$

 $P_t C_t + \sum_{j \in J_t} \Theta_t^j B_{t+1}^j \leq \sum_{j \in J_{t-1}} e^{-\psi_t^j} (\Theta_t^j + \mathcal{D}_t^j) B_t^j + W_t L_t + \Pi_t + T_t$

• with expenditure $P_t C_t = P_{Ht} C_{Ht} + P_{Ft} C_{Ft}$ and import demand:

$$C_{Ft} = \gamma e^{\xi_t} \left(\frac{P_{Ft}}{P_t} \right)^{-\theta} C_t.$$

• Home households solve:

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t e^{\chi_t} \left(\frac{1}{1-\sigma} C_t^{1-\sigma} - \frac{e^{\kappa_t}}{1+1/\varphi} L_t^{1+1/\varphi} \right)$$

 $P_t C_t + \sum_{j \in J_t} \Theta_t^j B_{t+1}^j \leq \sum_{j \in J_{t-1}} e^{-\psi_t^j} (\Theta_t^j + \mathcal{D}_t^j) B_t^j + W_t L_t + \Pi_t + T_t$

• with expenditure $P_t C_t = P_{Ht} C_{Ht} + P_{Ft} C_{Ft}$ and import demand:

$$C_{Ft} = \gamma e^{\xi_t} \left(\frac{P_{Ft}}{P_t}\right)^{-\theta} C_t.$$

• Price level: $P_t \approx P_{Ht}^{1-\gamma} P_{Ft}^{\gamma} = e^{P_t}$

• Production $Y_t = e^{a_t}L_t$ and marginal cost $MC_t = e^{-a_t}W_t$

• Home households solve:

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t e^{\chi_t} \left(\frac{1}{1-\sigma} C_t^{1-\sigma} - \frac{e^{\kappa_t}}{1+1/\varphi} L_t^{1+1/\varphi} \right)$$

 $P_t C_t + \sum_{j \in J_t} \Theta_t^j B_{t+1}^j \leq \sum_{j \in J_{t-1}} e^{-\psi_t^j} (\Theta_t^j + \mathcal{D}_t^j) B_t^j + W_t L_t + \Pi_t + T_t$

• with expenditure $P_t C_t = P_{Ht} C_{Ht} + P_{Ft} C_{Ft}$ and import demand:

$$C_{Ft} = \gamma e^{\xi_t} \left(\frac{P_{Ft}}{P_t} \right)^{-\theta} C_t.$$

• Price level: $P_t \approx P_{Ht}^{1-\gamma} P_{Ft}^{\gamma} = e^{P_t}$

- Production $Y_t = e^{a_t} L_t$ and marginal cost $MC_t = e^{-a_t} W_t$
- Price setting: $P_{Ht} = e^{\mu_t} M C_t$ and $P^*_{Ht} = e^{\mu_t + \eta_t} M C_t / \mathcal{E}_t$

• Home households solve:

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t e^{\chi_t} \left(\frac{1}{1-\sigma} C_t^{1-\sigma} - \frac{e^{\kappa_t}}{1+1/\varphi} L_t^{1+1/\varphi} \right)$$

 $P_tC_t + \sum_{j \in J_t} \Theta_t^j B_{t+1}^j \leq \sum_{j \in J_{t-1}} e^{-\psi_t^j} (\Theta_t^j + \mathcal{D}_t^j) B_t^j + W_t L_t + \Pi_t + T_t$

• with expenditure $P_t C_t = P_{Ht} C_{Ht} + P_{Ft} C_{Ft}$ and import demand:

$$C_{Ft} = \gamma e^{\xi_t} \left(\frac{P_{Ft}}{P_t}\right)^{-\theta} C_t.$$

• Price level: $P_t \approx P_{Ht}^{1-\gamma} P_{Ft}^{\gamma} = e^{P_t}$

- Production $Y_t = e^{a_t} L_t$ and marginal cost $MC_t = e^{-a_t} W_t$
- Price setting: $P_{Ht} = e^{\mu_t} M C_t$ and $P^*_{Ht} = e^{\mu_t + \eta_t} M C_t / \mathcal{E}_t$
- Government:

$$T_t = \sum_{j \in J_{t-1}} (1 - e^{-\psi_t^j}) (\Theta_t^j + \mathcal{D}_t^j) B_t^j - P_t G_t, \quad G_t \equiv e^{g_t}$$

Equilibrium Conditions

• Asset market clearing:

$$B_t^j + B_t^{*j} = 0$$
 for $j \in J_{t-1} \cap J_{t-1}^*$

• Goods market clearing: $Y_t = Y_{Ht} + Y^*_{Ht}$ and e.g.

$$Y_{Ht}^* = C_{Ht}^* + G_{Ht}^* = \gamma e^{(1-\gamma)\xi_t^*} \left(\frac{P_{Ht}^*}{P_t^*}\right)^{-\theta} [C_t^* + G_t^*]$$

Equilibrium Conditions

• Asset market clearing:

$$B_t^j + B_t^{*j} = 0$$
 for $j \in J_{t-1} \cap J_{t-1}^*$

• Goods market clearing: $Y_t = Y_{Ht} + Y^*_{Ht}$ and e.g.

$$Y_{Ht}^* = C_{Ht}^* + G_{Ht}^* = \gamma e^{(1-\gamma)\xi_t^*} \left(\frac{P_{Ht}^*}{P_t^*}\right)^{-\theta} [C_t^* + G_t^*]$$

• Country budget constraint:

$$\sum_{j \in J_t} \Theta_t^j B_{t+1}^j - \sum_{j \in J_{t-1}} (\Theta_t^j + \mathcal{D}_t^j) B_t^j = \mathsf{N} \mathsf{X}_t = \mathcal{E}_t \mathsf{P}_{\mathsf{H}t}^* \mathsf{Y}_{\mathsf{H}t}^* - \mathsf{P}_{\mathsf{F}t} \mathsf{Y}_{\mathsf{F}t}$$

Equilibrium Conditions

• Asset market clearing:

$$B_t^j + B_t^{*j} = 0$$
 for $j \in J_{t-1} \cap J_{t-1}^*$

• Goods market clearing: $Y_t = Y_{Ht} + Y_{Ht}^*$ and e.g.

$$Y_{Ht}^* = C_{Ht}^* + G_{Ht}^* = \gamma e^{(1-\gamma)\xi_t^*} \left(\frac{P_{Ht}^*}{P_t^*}\right)^{-\theta} [C_t^* + G_t^*]$$

• Country budget constraint:

$$\sum_{j \in J_t} \Theta_t^j B_{t+1}^j - \sum_{j \in J_{t-1}} (\Theta_t^j + \mathcal{D}_t^j) B_t^j = NX_t = \mathcal{E}_t P_{Ht}^* Y_{Ht}^* - P_{Ft} Y_{Ft}$$

• Generalized Backus-Smith condition:

$$\mathcal{Q}_t = \Lambda e^{\zeta_t} \left(\frac{C_t}{C_t^*}\right)^{\sigma},$$

where $\Delta \zeta_t = \tilde{\psi}_t \equiv \psi_t^j - \psi_t^{*j}$ for all j with $\zeta_{-1} = 0$

Macro and international shocks

- *p*_t inflation shock (monetary policy)
- *a*_t productivity shock
- g_t government spending shock
- μ_t markup shock (sticky prices)
- κ_t labor wedge (sticky wages)
- ξ_t international good demand shock
- η_t law-of-one-price shock (LCP/DCP, trade costs)
- ψ_t^j financial (asset demand) shocks

+ their foreign counterparts

MACRO DISCONNECT

Macro Disconnect

Definition (1. Macro disconnect in the autarky limit)

Denote with $Z_t \equiv (W_t, P_t, C_t, L_t, Y_t)$ a vector of all domestic macro variables (wage rate, price level, consumption, employment, output) and with $\varepsilon_t \equiv V'\Omega_t + V^{*'}\Omega_t^*$ an arbitrary combination of shocks. We say that an open economy $\gamma > 0$) exhibits macro disconnect in the autarky limit if

$$\lim_{\gamma \to 0} \frac{\mathrm{d}Z_t}{\mathrm{d}\varepsilon_t} = 0 \quad \text{and} \quad \lim_{\gamma \to 0} \frac{\mathrm{d}\mathcal{E}_t}{\mathrm{d}\varepsilon_t} \neq 0. \tag{1}$$

A corollary of condition (1) is that $\lim_{\gamma \to 0} [d \log \mathcal{E}_t - d \log \mathcal{Q}_t]/d\varepsilon_t = 0.$

Macro Disconnect

Definition (1. Macro disconnect in the autarky limit)

Denote with $Z_t \equiv (W_t, P_t, C_t, L_t, Y_t)$ a vector of all domestic macro variables (wage rate, price level, consumption, employment, output) and with $\varepsilon_t \equiv V'\Omega_t + V^{*'}\Omega_t^*$ an arbitrary combination of shocks. We say that an open economy $\gamma > 0$) exhibits macro disconnect in the autarky limit if

$$\lim_{\gamma \to 0} \frac{\mathrm{d}Z_t}{\mathrm{d}\varepsilon_t} = 0 \qquad \text{and} \qquad \lim_{\gamma \to 0} \frac{\mathrm{d}\mathcal{E}_t}{\mathrm{d}\varepsilon_t} \neq 0. \tag{1}$$

A corollary of condition (1) is that $\lim_{\gamma \to 0} [d \log \mathcal{E}_t - d \log \mathcal{Q}_t]/d\varepsilon_t = 0.$

Proposition (1)

The model cannot exhibit macro disconnect in the autarky limit if the combined shock ε_t has a weight of zero on subset of shocks $\{\eta_t, \xi_t, \psi_t\}$.

Macro Disconnect

Definition (1. Macro disconnect in the autarky limit)

Denote with $Z_t \equiv (W_t, P_t, C_t, L_t, Y_t)$ a vector of all domestic macro variables (wage rate, price level, consumption, employment, output) and with $\varepsilon_t \equiv V'\Omega_t + V^{*'}\Omega_t^*$ an arbitrary combination of shocks. We say that an open economy $\gamma > 0$) exhibits macro disconnect in the autarky limit if

$$\lim_{\gamma \to 0} \frac{\mathrm{d}Z_t}{\mathrm{d}\varepsilon_t} = 0 \qquad \text{and} \qquad \lim_{\gamma \to 0} \frac{\mathrm{d}\mathcal{E}_t}{\mathrm{d}\varepsilon_t} \neq 0. \tag{1}$$

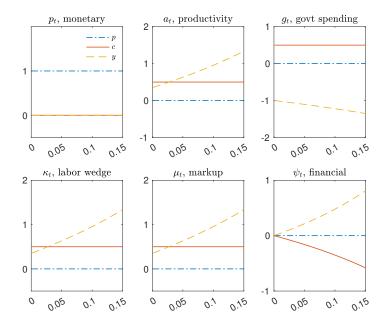
A corollary of condition (1) is that $\lim_{\gamma \to 0} [d \log \mathcal{E}_t - d \log \mathcal{Q}_t]/d\varepsilon_t = 0.$

Proposition (1)

The model cannot exhibit macro disconnect in the autarky limit if the combined shock ε_t has a weight of zero on subset of shocks $\{\eta_t, \xi_t, \psi_t\}$.

- Macro shocks $\Omega_t^{\varnothing} \equiv \{p_t, a_t, g_t, \kappa_t, \mu_t\}$ do not result in disconnect
 - bad news for conventional IRBC and NOEM models of ER

Illustration: $\frac{\mathrm{d}z_t}{\mathrm{d}e_t} \equiv \frac{\partial z_t/\partial \varepsilon_t}{\partial e_t/\partial \varepsilon_t}$ as a function of γ



Financial Shocks

Proposition (2)

Near the autarky limit ($\gamma \rightarrow 0$), the international asset demand shock ψ_t is the only shock in { η_t , ξ_t , ψ_t } that simultaneously and robustly produces:

- (i) a positive correlation between the terms of trade and the real exchange rate (Terms of Trade puzzle);
- *(ii)* a negative correlation between relative consumption growth and the real exchange rate depreciation (Backus-Smith puzzle);

(iii) deviations from UIP and a negative Fama coefficient.

Financial Shocks

Proposition (2)

Near the autarky limit ($\gamma \rightarrow 0$), the international asset demand shock ψ_t is the only shock in { η_t , ξ_t , ψ_t } that simultaneously and robustly produces:

- *(i)* a positive correlation between the terms of trade and the real exchange rate (Terms of Trade puzzle);
- *(ii)* a negative correlation between relative consumption growth and the real exchange rate depreciation (Backus-Smith puzzle);

(iii) deviations from UIP and a negative Fama coefficient.

- Conclusions:
 - Initial shocks most promising for a single-shock model of disconnect
 - trade cost and LOP deviation shocks can also be useful

Financial Shocks

Proposition (2)

Near the autarky limit ($\gamma \rightarrow 0$), the international asset demand shock ψ_t is the only shock in { η_t , ξ_t , ψ_t } that simultaneously and robustly produces:

- *(i)* a positive correlation between the terms of trade and the real exchange rate (Terms of Trade puzzle);
- *(ii)* a negative correlation between relative consumption growth and the real exchange rate depreciation (Backus-Smith puzzle);

(iii) deviations from UIP and a negative Fama coefficient.

- Conclusions:
 - **1** Financial shocks most promising for a single-shock model of disconnect
 - trade cost and LOP deviation shocks can also be useful
 - Adding macro shocks can help match macro business cycle dynamics without compromising disconnect
 - Backus-Smith moment provides identification for the right mix of financial and macro shocks: supply of goods vs demand for assets

Financial Shocks

Proposition (2)

Near the autarky limit ($\gamma \rightarrow 0$), the international asset demand shock ψ_t is the only shock in { η_t , ξ_t , ψ_t } that simultaneously and robustly produces:

- (i) a positive correlation between the terms of trade and the real exchange rate (Terms of Trade puzzle);
- *(ii)* a negative correlation between relative consumption growth and the real exchange rate depreciation (Backus-Smith puzzle);

(iii) deviations from UIP and a negative Fama coefficient.

- Conclusions:
 - **1** Financial shocks most promising for a single-shock model of disconnect
 - trade cost and LOP deviation shocks can also be useful
 - Adding macro shocks can help match macro business cycle dynamics without compromising disconnect
 - Backus-Smith moment provides identification for the right mix of financial and macro shocks: supply of goods vs demand for assets
 - Macro news are "financial" shocks from perspective of Props. 1&2

FINANCIAL DISCONNECT

Asset Prices and Returns

- Asset returns: $\mathcal{R}_{t+1}^{j} = \frac{\Theta_{t+1}^{j} + \mathcal{D}_{t+1}^{j}}{\Theta_{t}^{j}}$
- Asset prices $j \in J_t$:

$$\Theta_t^j = \mathbb{E}_t \left\{ e^{-\psi_{t+1}^j} \mathcal{M}_{t+1} \left(\Theta_{t+1}^j + \mathcal{D}_{t+1}^j \right) \right\},\,$$

where $\mathcal{M}_{t+1} \equiv \beta \left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \frac{P_t}{P_{t+1}}$ is home SDF

Asset Prices and Returns

- Asset returns: $\mathcal{R}_{t+1}^{j} = \frac{\Theta_{t+1}^{j} + \mathcal{D}_{t+1}^{j}}{\Theta_{t}^{j}}$
- Asset prices $j \in J_t$:

$$\Theta_t^j = \mathbb{E}_t \left\{ e^{-\psi_{t+1}^j} \mathcal{M}_{t+1} \left(\Theta_{t+1}^j + \mathcal{D}_{t+1}^j \right) \right\},\,$$

where
$$\mathcal{M}_{t+1} \equiv \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\sigma} \frac{P_t}{P_{t+1}}$$
 is home SDF

• Asset prices from the perspective of foreigners, $j \in J_t^*$:

$$\Theta_t^{*j} = \frac{\Theta_t^j}{\mathcal{E}_t} = \mathbb{E}_t \left\{ e^{-\psi_{t+1}^{*j}} \mathcal{M}_{t+1}^* \big(\Theta_{t+1}^{*j} + \mathcal{D}_{t+1}^{*j} \big) \right\}$$

Asset Prices and Returns

- Asset returns: $\mathcal{R}_{t+1}^{j} = \frac{\Theta_{t+1}^{j} + \mathcal{D}_{t+1}^{j}}{\Theta_{t}^{j}}$
- Asset prices $j \in J_t$:

$$\Theta_t^j = \mathbb{E}_t \left\{ e^{-\psi_{t+1}^j} \mathcal{M}_{t+1} \left(\Theta_{t+1}^j + \mathcal{D}_{t+1}^j \right) \right\},\,$$

where
$$\mathcal{M}_{t+1} \equiv \beta \left(rac{C_{t+1}}{C_t}
ight)^{-\sigma} rac{P_t}{P_{t+1}}$$
 is home SDF

• Asset prices from the perspective of foreigners, $j \in J_t^*$:

$$\Theta_t^{*j} = \frac{\Theta_t^j}{\mathcal{E}_t} = \mathbb{E}_t \left\{ e^{-\psi_{t+1}^{*j}} \mathcal{M}_{t+1}^* \big(\Theta_{t+1}^{*j} + \mathcal{D}_{t+1}^{*j} \big) \right\}$$

• Sets of "local currency" assets $\mathcal{A}_t, \mathcal{A}_t^* \in J_t \cap J_t^*$ with dividends, \mathcal{D}_{t+1}^i for $i \in \mathcal{A}_t$ and $\mathcal{D}_{t+1}^{*j} = \mathcal{D}_{t+1}^j / \mathcal{E}_{t+1}$ for $j \in \mathcal{A}_t^*$, independent of \mathcal{E}_{t+1} — all local equities and full terms structure of bonds

Financial Disconnect

Definition (2. Financial disconnect in the autarky limit)

Denote with $F_t \equiv \{\Theta_t^i, \Theta_t^{*j}\}$, where $i \in A_t$ and $j \in A_t^*$, a vector of asset prices that are not mechanically correlated with the exchange rate. We say that an open economy ($\gamma > 0$) exhibits financial disconnect in the limit if

$$\lim_{\gamma \to 0} \frac{\mathrm{d}\mathsf{F}_t}{\mathrm{d}\varepsilon_t} = 0 \qquad \text{and} \qquad \lim_{\gamma \to 0} \frac{\mathrm{d}\mathcal{E}_t}{\mathrm{d}\varepsilon_t} \neq 0. \tag{2}$$

Financial Disconnect

Definition (2. Financial disconnect in the autarky limit)

Denote with $F_t \equiv \{\Theta_t^i, \Theta_t^{*j}\}$, where $i \in A_t$ and $j \in A_t^*$, a vector of asset prices that are not mechanically correlated with the exchange rate. We say that an open economy ($\gamma > 0$) exhibits financial disconnect in the limit if

$$\lim_{\gamma \to 0} \frac{\mathrm{d}\mathsf{F}_t}{\mathrm{d}\varepsilon_t} = 0 \qquad \text{and} \qquad \lim_{\gamma \to 0} \ \frac{\mathrm{d}\mathcal{E}_t}{\mathrm{d}\varepsilon_t} \neq 0. \tag{2}$$

Proposition (3)

Suppose that the sets A_t and A_t^* are sufficiently rich. Then the model cannot exhibit financial disconnect in the autarky limit if the combined shock ε_t has a weight of zero on the subset of shocks $\{\eta_t, \xi_t, \psi_t^j\}$.

Financial Disconnect

Definition (2. Financial disconnect in the autarky limit)

Denote with $F_t \equiv \{\Theta_t^i, \Theta_t^{*j}\}$, where $i \in A_t$ and $j \in A_t^*$, a vector of asset prices that are not mechanically correlated with the exchange rate. We say that an open economy ($\gamma > 0$) exhibits financial disconnect in the limit if

$$\lim_{\gamma \to 0} \frac{\mathrm{d}\mathsf{F}_t}{\mathrm{d}\varepsilon_t} = 0 \qquad \text{and} \qquad \lim_{\gamma \to 0} \ \frac{\mathrm{d}\mathcal{E}_t}{\mathrm{d}\varepsilon_t} \neq 0. \tag{2}$$

Proposition (3)

Suppose that the sets A_t and A_t^* are sufficiently rich. Then the model cannot exhibit financial disconnect in the autarky limit if the combined shock ε_t has a weight of zero on the subset of shocks $\{\eta_t, \xi_t, \psi_t^j\}$.

• Macro news shocks are consistent with "Macro disconnect", but not "Financial disconnect" in the autarky limit

Shocks ψ_t^{*j} , $j \in A_t$ and ψ_t^i , $i \in A_t^*$ are consistent with financial disconnect in the autarky limit.

Shocks ψ_t^{*j} , $j \in A_t$ and ψ_t^i , $i \in A_t^*$ are consistent with financial disconnect in the autarky limit.

• Foreign demand for "domestic currency" assets lead to exchange rate volatility without asset price volatility

Shocks ψ_t^{*j} , $j \in A_t$ and ψ_t^i , $i \in A_t^*$ are consistent with financial disconnect in the autarky limit.

• Foreign demand for "domestic currency" assets lead to exchange rate volatility without asset price volatility

• In contrast, domestic demand for domestic assets moves asset prices

Shocks ψ_t^{*j} , $j \in A_t$ and ψ_t^i , $i \in A_t^*$ are consistent with financial disconnect in the autarky limit.

- Foreign demand for "domestic currency" assets lead to exchange rate volatility without asset price volatility
 - may additionally move asset positions, B_t^j and B_t^{*j} , hence requires limited asset supply elasticity
 - limiting case of fully inelastic supply (segmented market models) results disconnect with asset positions as well
- In contrast, domestic demand for domestic assets moves asset prices

- **()** Financial shocks are necessary for a model of Macro disconnect
 - trade cost and LOP deviation shocks can also be useful as addition
- Adding macro shocks helps match macro business cycle dynamics without compromising disconnect
 - Backus-Smith moment provides identification for the right mix of financial and macro shocks: supply of goods vs demand for assets

- **()** Financial shocks are necessary for a model of Macro disconnect
 - trade cost and LOP deviation shocks can also be useful as addition
- Adding macro shocks helps match macro business cycle dynamics without compromising disconnect
 - Backus-Smith moment provides identification for the right mix of financial and macro shocks: supply of goods vs demand for assets
- Macro news are "financial" shocks from the perspective of Macro disconnect, however, are inconsistent with Financial disconnect

- **()** Financial shocks are necessary for a model of Macro disconnect
 - trade cost and LOP deviation shocks can also be useful as addition
- Adding macro shocks helps match macro business cycle dynamics without compromising disconnect
 - Backus-Smith moment provides identification for the right mix of financial and macro shocks: supply of goods vs demand for assets
- Macro news are "financial" shocks from the perspective of Macro disconnect, however, are inconsistent with Financial disconnect
- Foreign demand for domestic asset results jointly in Macro and Financial disconnect
 - requires inelastic (imperfectly elastic) asset supply

- **9** Financial shocks are necessary for a model of Macro disconnect
 - $-\!\!\!-$ trade cost and LOP deviation shocks can also be useful as addition
- Adding macro shocks helps match macro business cycle dynamics without compromising disconnect
 - Backus-Smith moment provides identification for the right mix of financial and macro shocks: supply of goods vs demand for assets
- Macro news are "financial" shocks from the perspective of Macro disconnect, however, are inconsistent with Financial disconnect
- Foreign demand for domestic asset results jointly in Macro and Financial disconnect
 - requires inelastic (imperfectly elastic) asset supply
- Recent segmented market models are not only sufficient, but likely also necessary to explain exchange rate disconnect

THANK YOU!

IMF CONFERENCE

