Granular Comparative Advantage

CECILE GAUBERT cecile.gaubert@berkeley.edu OLEG ITSKHOKI itskhoki@econ.ucla.edu

UC Davis September 2019

Exports are Granular

• Freund and Pierola (2015): "Export Superstars"

Across 32 developing countries, the largest exporting firm accounts on average for 17% of total manufacturing exports

• Our focus: French manufacturing

Average export share of the largest firm

Manufacturing	1 industry	7%
— 2-digit	23 sectors	18%
— 3-digit	117 sectors	26%
— 4-digit	316 sectors	37%

- Firm-size distribution is:
 - $\begin{array}{c} \textbf{1} \quad \mathsf{fat-tailed} \ (\mathsf{Zipf's} \ \mathsf{law}) \\ \textbf{2} \quad \mathsf{discrete} \end{array} \right\} \implies \mathsf{Granularity}$
- Canonical example: power law (Pareto) with shape heta < 2
- Intuitions from Gaussian world fail, even for very large N
 - a single draw can shape $\sum_{i=1}^{N} X_i$ (illustration
 - average can differ from expectation (failure of LLN)

- Firm-size distribution is:
 - $\begin{array}{c} \textbf{1} \quad \mathsf{fat-tailed} \ (\mathsf{Zipf's} \ \mathsf{law}) \\ \textbf{2} \quad \mathsf{discrete} \end{array} \right\} \implies \mathsf{Granularity}$
- Canonical example: power law (Pareto) with shape heta < 2
- Intuitions from Gaussian world fail, even for very large N
 - a single draw can shape $\sum_{i=1}^{N} X_i$ vilustration
 - average can differ from expectation (failure of LLN)
- Most common application: aggregate fluctuations
 Gabaix (2011), di Giovanni and Levchenko (2012)
- The role of granularity for **comparative advantage** of countries is a natural question, yet has not been explored
 - Can a few firms shape country-sector specialization?

Trade Models

- Trade models acknowledge fat-tailed-ness but not discreteness
 - emphasis on firms, but each firm is infinitesimal (LLN applies)
 - hence, no role of individual firms in shaping sectoral aggregates
- Exceptions with discrete number of firms
 - 1 One-sector model of Eaton, Kortum and Sotelo (EKS, 2012)
 - Literature on competition/markups (e.g., AB 2008, EMX 2014, AIK 2014, 2019, Neary 2015)

Trade Models

- Trade models acknowledge fat-tailed-ness but not discreteness
 - emphasis on firms, but each firm is infinitesimal (LLN applies)
 - hence, no role of individual firms in shaping sectoral aggregates
- Exceptions with discrete number of firms
 - 1 One-sector model of Eaton, Kortum and Sotelo (EKS, 2012)
 - 2 Literature on competition/markups (e.g., AB 2008, EMX 2014, AIK 2014, 2019, Neary 2015)
- Our focus: can granularity explain sectoral trade patterns?
 - 1 sector-level comparative advantage (like DFS)
 - 2 firm heterogeneity within sectors (like Melitz)
 - **3** granularity within sectors (like EKS)
 - \longrightarrow relax the LLN assumption in a multi-sector Melitz model take seriously that a typical French sector has 350 firms with the largest firm commanding a 20% market share

Our approach

Our approach

• Fundamental vs Granular

Our approach

• Fundamental vs Granular: Why do we care?

This paper

• Roadmap:

- 1 Basic framework with granular comparative advantage
- **2** GE Estimation Procedure
 - SMM using French firm-level data
- **3** Explore implications of the estimated granular model
 - many continuous-world intuitions fail
 - dynamic and policy counterfactuals

This paper

- Roadmap:
 - 1 Basic framework with granular comparative advantage
 - **2** GE Estimation Procedure
 - SMM using French firm-level data
 - 3 Explore implications of the estimated granular model
 - many continuous-world intuitions fail
 - dynamic and policy counterfactuals
- Highlights of the results from the estimated model:
 - A parsimonious granular model fits many empirical patterns. Moments of firm-size distribution explain trade patterns
 - 2 Granularity accounts for 20% of variation in export shares
 - most export-intensive sectors tend to be granular
 - **3** Granularity can explain much of the mean reversion in CA
 - more granular sectors are more volatile
 - death of a single firm can alter considerably the CA
 - 4 Policy in a granular economy: mergers and tariffs
 - the role of markups

Modeling Framework

Model Structure

1 Two countries: Home and Foreign

— inelastically-supplied labor L and L^*

2 Continuum of sectors $z \in [0, 1]$:

$$Q = \exp\left\{\int_0^1 \alpha_z \log Q_z \ dz\right\}$$

3 Sectors vary in comparative advantage: $\log \frac{T_z}{T_z^*} \sim \mathcal{N}(\mu_T, \sigma_T)$

Model Structure

1 Two countries: Home and Foreign

— inelastically-supplied labor L and L^*

2 Continuum of sectors $z \in [0, 1]$:

$$Q = \exp\left\{\int_0^1 \alpha_z \log Q_z \ dz\right\}$$

3 Sectors vary in comparative advantage: $\log \frac{T_z}{T_z^*} \sim \mathcal{N}(\mu_T, \sigma_T)$

4 Within a sector, a finite number of firms (varieties) K_z :

$$Q_z = \left[\sum_{i=1}^{K_z} q_{z,i}^{\frac{\sigma-1}{\sigma}}
ight]^{rac{\sigma}{\sigma-1}}$$

5 Each sector has an EKS market structure

EKS Sectors

- Productivity draws in a given sector z:
 - Number of (shadow) entrants: $Poisson(M_z)$
 - Entrants' productivity draws: $Pareto(\theta; \varphi_z)$
- Denote N_{arphi} number of firms with productivity $\geq arphi$

$$N_{\varphi} \sim \text{Poisson}(T_z \cdot \varphi^{-\theta}), \qquad T_z \equiv M_z \underline{\varphi}_z^{\theta}$$

with T_z/T_z^* shaping sector-level CA

EKS Sectors

- Productivity draws in a given sector z:
 - Number of (shadow) entrants: $Poisson(M_z)$
 - Entrants' productivity draws: $Pareto(\theta; \varphi_z)$
- Denote N_{arphi} number of firms with productivity $\geq arphi$

$$N_{\varphi} \sim \text{Poisson}(T_{z} \cdot \varphi^{-\theta}), \qquad T_{z} \equiv M_{z} \varphi_{z}^{\theta}$$

with T_z/T_z^* shaping sector-level CA

- Marginal cost: $c = w/\varphi$ at home and $\tau w/\varphi$ abroad
- Fixed cost of production and exports: F in local labor

EKS Sectors

- Productivity draws in a given sector z:
 - Number of (shadow) entrants: $Poisson(M_z)$
 - Entrants' productivity draws: $Pareto(\theta; \varphi_z)$
- Denote N_{arphi} number of firms with productivity $\geq arphi$

$$N_{\varphi} \sim \text{Poisson}(T_{z} \cdot \varphi^{-\theta}), \qquad T_{z} \equiv M_{z} \underline{\varphi}_{z}^{\theta}$$

with T_z/T_z^* shaping sector-level CA

- Marginal cost: $c = w/\varphi$ at home and $\tau w/\varphi$ abroad
- Fixed cost of production and exports: F in local labor
- Oligopolistic (Bertrand) competition and variable markups
 Atkeson-Burstein (2008): {c_i} → {s_i, µ_i, p_i}^{K_z}_{i=1} show

Market Entry and GE

• Assumption: sequential entry in increasing order of unit cost

$$c_1 < c_2 < \ldots < c_K < \ldots$$
, where $c_i = \begin{bmatrix} w/\varphi_i, & \text{if Home,} \\ \tau w^*/\varphi_i^*, & \text{if Foreign} \end{bmatrix}$

 \rightarrow unique equilibrium

• Profits:
$$\Pi_i = \frac{s_i}{\varepsilon(s_i)} \alpha_z \mathbf{Y} - \mathbf{w} F$$

Market Entry and GE

Assumption: sequential entry in increasing order of unit cost

 $c_1 < c_2 < \ldots < c_K < \ldots$, where $c_i = \begin{bmatrix} w/\varphi_i, & \text{if Home,} \\ \tau w^*/\varphi_i^*, & \text{if Foreign} \end{bmatrix}$

 \rightarrow unique equilibrium

• Profits:
$$\Pi_i = \frac{s_i}{\varepsilon(s_i)} \alpha_z Y - wF$$

• Entry: $\Pi_{K}^{K} \geq 0$ and $\Pi_{K+1}^{K+1} < 0 \longmapsto$ determines K_{z}

Market Entry and GE

Assumption: sequential entry in increasing order of unit cost

$$c_1 < c_2 < \ldots < c_K < \ldots$$
, where $c_i = \begin{bmatrix} w/\varphi_i, & \text{if Home,} \\ \tau w^*/\varphi_i^*, & \text{if Foreign} \end{bmatrix}$

 \rightarrow unique equilibrium

• Profits:
$$\Pi_i = \frac{s_i}{\varepsilon(s_i)} \alpha_z \mathbf{Y} - \mathbf{w} F$$

- Entry: $\Pi_{K}^{K} \geq 0$ and $\Pi_{K+1}^{K+1} < 0 \longmapsto$ determines K_{z}
- General equilibrium:
 - GE vector **X** = (*Y*, *Y*^{*}, *w*, *w*^{*})
 - Within-sector allocations $\mathbf{Z} = \left\{ K_z, \{s_{z,i}\}_{i=1}^{K_z} \right\}_{z \in [0,1]}$
 - Labor market clearing and trade balance (linear in X)
 - Fast iterative algorithm

Estimation and Model Fit

Estimation procedure

- Data: French firm-level data (BRN) and Trade data
 - Firm-level domestic sales and export sales
 - Aggregate import data (Comtrade)
 - 119 4-digit manufacturing sectors
- Parametrize sector-level comparative advantage:
 - $T(z)/T^*(z) \sim \log \mathcal{N}(\mu_T, \sigma_T)$ (and robustness with Laplace)
 - Based on empirical distribution shown in Hanson et al. (2015)
- Stage 1: calibrate Cobb-Douglas shares $\{\alpha_z\}$ and w/w*
 - CD shares read from domestic sales + imports, by sector
 - w/w* = 1.13, trade-weighted wage of France's trade partners
 - Normalizations: w = 1 and L = 100
- Stage 2: SMM procedure to estimate {σ, θ, τ, F, μ_T, σ_T}, while (Y, Y*, L*/L) are pinned down by GE

Estimated Parameters

Parameter	Estimate	Std. error	Auxiliary va	riables
$\sigma \\ heta$	5 4.307	<u> </u>	$\kappa = \frac{\theta}{\sigma - 1}$	1.077
au	1.341	0.061	w/w*	1.130
F ($ imes$ 10 ⁵)	0.946	0.252	L^*/L	1.724
μ_{T}	0.137	0.193	Y^*/Y	1.526
σ_T	1.422	0.232	Π/Y	0.211

Moment Fit

	Moments		Data, m ̂	Model, $\bar{\mathcal{M}}(\hat{\Theta})$	Loss (%)
1. 2.	Log number of firms, mean — st. dev.	$\log \tilde{M}_z$	5.631 1.451	5.624 1.222	0.1 7.9
3. 4.	Top-firm market share, mean — st. dev.	$\tilde{s}_{z,1}$	0.197 0.178	0.206 0.149	3.5 3.8
5. 6.	Top-3 market share, mean — st. dev.	$\sum_{j=1}^{3} \tilde{s}_{z,j}$	0.356 0.241	0.343 0.175	2.0 11.5
7. 8.	Imports/dom. sales, mean — st. dev.	$\tilde{\Lambda}_z$	0.365 0.204	0.351 0.268	2.2 14.8
9. 10.	Exports/dom. sales, mean — st. dev.	$\tilde{\Lambda}_z^{*\prime}$	0.328 0.286	0.350 0.346	6.0 6.5
11.	Fraction of sectors with exports>dom. sales	$\mathbb{P} \Big\{ egin{smallmatrix} ilde{X}_z > \ ilde{Y}_z - ilde{X}_z^* \Big\}$	0.185	0.092	37.9
Reg	ression coefficients [†]				
12.	export share on top-firm share	\hat{b}_1	0.215 (0.156)	0.243 (0.104)	2.6
13.	export share on top-3 share	\hat{b}_3	0.254 (0.108)	0.232 (0.090)	1.1
14.	import share on top-firm share	\hat{b}_1^*	-0.016 (0.097)	-0.020 (0.079)	0.0
15.	export share on top-3 share	\hat{b}_3^*	0.002 (0.074)	-0.005 (0.069)	0.1

Non-targeted Moments

• Correlation between top market share and number of firms:

$$\begin{split} \tilde{s}_{z,1} &= const + \gamma_M \, \cdot \, \log \tilde{M}_z \, + \, \gamma_Y \, \cdot \, \log \tilde{Y}_z + \epsilon_z^s \\ \text{Data:} & -0.094 & 0.018 \\ (0.008) & (0.008) \\ \text{Model:} & -0.064 & 0.025 \\ (0.007) & (0.006) \end{split}$$

• Extensive margin of sales:

$$\begin{array}{l} \log \tilde{M}_z = c_d + \chi_d & \cdot & \log(\tilde{Y}_z - \tilde{X}_z^*) + \epsilon_z^d \\ \text{Data:} & 0.563 \\ & (0.082) \\ \text{Model:} & 0.861 \\ & (0.011) \end{array}$$

Equilibrium markups

- Oligopolistic (Bertrand) markups: averages (blue bars) and 10–90% range (red intervals) across industry
- Monopolistic competition markup: $\frac{\sigma}{\sigma-1}=1.25$ is lower bound for all oligopolistic markups

Quantifying Granular Trade

Properties of the Granular Model

• Foreign share:

$$\Lambda_z \equiv \frac{X_z^*}{\alpha_z Y} = \sum_{i=1}^{K_z} (1 - \iota_{z,i}) s_{z,i}$$

• Expected foreign share:

$$\Phi_z = \mathbb{E}\left\{ \Lambda_z \ \Big| \ rac{T_z}{T_z^*}
ight\} = rac{1}{1 + (au \omega)^ heta \cdot rac{T_z}{T_z^*}}$$

• Granular residual:

$$\Gamma_{z} \equiv \Lambda_{z} - \Phi_{z} \quad : \qquad \mathbb{E}_{T} \{ \Gamma_{z} \} = \mathbb{E}_{T} \{ \Lambda_{z} - \Phi_{z} \} = 0$$

Aggregate exports:

$$X^* = Y \int_0^1 \alpha_z \Lambda_z \mathrm{d}z = \Phi Y, \qquad \Phi \equiv \int_0^1 \alpha_z \Phi_z \mathrm{d}z$$

Decomposition of Trade Flows

• Variance decomposition of $X_z = \Lambda_z^* \alpha_z Y^*$ with $\Lambda_z^* = \Phi_z^* + \Gamma_z^*$: $\operatorname{var}(\Lambda_z^*) = \operatorname{var}(\Phi_z^*) + \operatorname{var}(\Gamma_z^*),$ $\operatorname{var}(\log X_z) \approx \operatorname{var}(\log \alpha_z) + \operatorname{var}(\log \Lambda_z^*)$

		Common θ		See	ctor-specif	ic θ_z
		(1)	(2)	(3)	(4)	(5)
Granular contribution	$rac{\operatorname{var}(\Gamma_z^*)}{\operatorname{var}(\Lambda_z^*)}$	17.0%	22.3%	26.0%	28.4%	20.3%
Export share contribution	$\frac{\operatorname{var}(\log \Lambda_z^*)}{\operatorname{var}(\log X_z)}$	57.2%	59.2%	62.5%	63.9%	59.0%
Pareto shape parameter	$\kappa_z = \frac{\theta_z}{\sigma - 1}$	1.08	1.00	1.02	0.96	1.15
Estimated Pareto shape	$\hat{\kappa}_z$	1.10	1.02	1.07	1.02	1.21
Top-firm market share	$s_{z,1}$	0.21	0.25	0.26	0.29	0.21

Table: Variance decomposition of trade flows

show fit

Decomposition of Trade Flows

• Variance decomposition of $X_z = \Lambda_z^* \alpha_z Y^*$ with $\Lambda_z^* = \Phi_z^* + \Gamma_z^*$: $\operatorname{var}(\Lambda_z^*) = \operatorname{var}(\Phi_z^*) + \operatorname{var}(\Gamma_z^*),$ $\operatorname{var}(\log X_z) \approx \operatorname{var}(\log \alpha_z) + \operatorname{var}(\log \Lambda_z^*)$

		Common θ		Sec	tor-specifi	ic θ_z
		(1)	(2)	(3)	(4)	(5)
Granular contribution	$rac{\operatorname{var}(\Gamma_z^*)}{\operatorname{var}(\Lambda_z^*)}$	17.0%	22.3%	26.0%	28.4%	20.3%
Export share contribution	$\frac{\operatorname{var}(\log \Lambda_z^*)}{\operatorname{var}(\log X_z)}$	57.2%	59.2%	62.5%	63.9%	59.0%
Pareto shape parameter	$\kappa_z = \frac{\theta_z}{\sigma - 1}$	1.08	1.00	1.02	0.96	1.15
Estimated Pareto shape	$\hat{\kappa}_z$	1.10	1.02	1.07	1.02	1.21
Top-firm market share	$s_{z,1}$	0.21	0.25	0.26	0.29	0.21

Tabl	e: \	/ariance	decompositio	n of	trade	flows

 $\begin{array}{ll} \mbox{Extensions:} & (i) \ T_z/T_z^* \sim Laplace \ (\mbox{two-sided Pareto}) \\ & (ii) \ \log \varphi_{z,i} \sim \mathcal{N}(\mu, \theta) \end{array}$

show fit

Export Intensity and Granularity

- Granularity does not create additional trade on average
- Yet, granularity creates skewness across sectors in exports
 - most export-intensive sectors are likely of granular origin

(b) Granular contribution to trade

Export Intensity and Granularity

- Granularity does not create additional trade on average
- Yet, granularity creates skewness across sectors in exports — most export-intensive sectors are likely of granular origin

Properties of Granular Exports

- $\Gamma_z^* = \Lambda_z^* \Phi_z^*$ are orthogonal with Φ_z^* , $\log(\alpha_z Y^*)$ and $\log \tilde{M}_z$
- Best predictor of Γ_z^* is $\tilde{s}_{z,1}$, the relative size of the largest firm

Table: Projections of granular exports Γ_z^*

	(1)	(2)	(3)	(4)	(5)	(6)
$\widetilde{s}_{z,1}$ $\widetilde{s}_{z,1}^*$		0.335	0.373	0.379	0.357 -0.254	0.354 -0.268
$\log \tilde{M}_z$ $\log(\alpha_z Y)$ Φ_z^*	-0.008		0.012	0.016 -0.005 0.004		-0.011 0.013 0.073
R^2	0.013	0.353	0.375	0.376	0.520	0.539

Identifying Granular Sectors

• Which sectors are granular? Neither Φ_z^* , nor Γ_z^* are observable

$$\mathbb{P}\{\Gamma_z^* \geq \vartheta \Lambda_z^* \,|\, \Lambda_z^*, \mathbf{r}_z\} = \frac{\int_{\Lambda_z^* - \Phi^* \geq \vartheta \Lambda_z^*} g\left(\Phi_z^*, \Lambda_z^*, \mathbf{r}_z\right) \mathrm{d} \Phi_z^*}{\int_0^1 g\left(\Phi_z^*, \Lambda_z^*, \mathbf{r}_z\right) \mathrm{d} \Phi_z^*},$$

19/30

Dynamics of Comparative Advantage

Dynamic Model

- Use the granular model with firm dynamics to study the implied time-series properties of aggregate trade
 - Shadow pull of firms in each sector with productivities $\{\varphi_{it}\}$
 - Productivity of the firms follows a random growth process: $\log \varphi_{it} = \mu + \log \varphi_{i,t-1} + \nu \varepsilon_{it}, \quad \varepsilon_{it} \sim iid\mathcal{N}(0,1)$ with reflection from the lower bound $\underline{\varphi}$ and $\mu = -\theta \nu^2/2$
 - Each period: static entry game and price setting equilibrium
- Calibrate idiosyncratic firm dynamics (volatility of shocks ν) using the dynamic properties of market shares

Dynamic Model

- Use the granular model with firm dynamics to study the implied time-series properties of aggregate trade
 - Shadow pull of firms in each sector with productivities $\{\varphi_{it}\}$
 - Productivity of the firms follows a random growth process: $\log \varphi_{it} = \mu + \log \varphi_{i,t-1} + \nu \varepsilon_{it}, \quad \varepsilon_{it} \sim iid\mathcal{N}(0,1)$ with reflection from the lower bound $\underline{\varphi}$ and $\mu = -\theta \nu^2/2$
 - Each period: static entry game and price setting equilibrium
- Calibrate idiosyncratic firm dynamics (volatility of shocks ν) using the dynamic properties of market shares
- Extension with aggregate shocks: $\varepsilon_{it} = \sqrt{\rho} \cdot v_t + \sqrt{1 \rho} \cdot u_{it}$

Firm Dynamics and CA

- Empirical evidence in Hanson, Lind and Muendler (2015):
 - 1 Hyperspecialization of exports
 - 2 High Turnover of export-intensive sectors

Moment	Da	Madal	
Moment	HLM	France	woder
SR persistence $\operatorname{std}(\Delta \tilde{s}_{z,i,t+1})$	_	0.0018	0.0017
LR persistence $\operatorname{corr}(\tilde{s}_{z,i,t+10}, \tilde{s}_{z,i,t})$	—	0.86	0.83
Top-1% sectors export share	21%	17%	18%
Top-3% sectors export share	43%	30%	33%
Turnover I: remain in top-5% after 20 years	52%	_	71%
Turnover II: remain in top-5% after 10 years	—	80%	79%

 Idiosyncratic firm productivity dynamics explains the majority of turnover of top exporting sectors over time

Mean Reversion in CA

- Idiosyncratic firm dynamics in a granular model predicts mean reversion in comparative advantage
- In addition, granular sectors are more volatile

Death of a Large Firm

- Death (sequence of negative productivity shocks) of a single firm can substantially affect sectoral comparative advantage
- In the most granular sectors, death of a single firm can push the sector from top-5% of CA into comparative disadvantage

Granularity and reallocation

Sectoral labor allocation:

$$\frac{L_z}{L} \approx \alpha_z + \frac{\theta}{\sigma \kappa - 1} \frac{N X_z}{Y}$$

• Interaction between trade openness and granularity results in sectoral reallocation and aggregate volatility

Figure: Total and Sectoral Labor Reallocation (fraction of total *L*)

Empirical Analysis

Granularity and Exports

Cross section and Dynamic panel

	Cross-secti	on, 2005	Panel, 199	97–2008		Dynamics	
$\log X_z$	(1)	(2)	(3)	(4)	(5)	(6)	(7)
$\sum_{i=1}^{3} \tilde{s}_{z,i}$	0.802*** (0.290)	0.833** (0.293)	0.846 ^{***} (0.302)	0.860** (0.302)	0.418 ^{***} (0.129)	0.512*** (0.133)	0.511*** (0.134)
$\log D_z$	0.895*** (0.050)	0.933*** (0.051)	0.909*** (0.051)	0.951*** (0.052)			
R ²	0.512	0.652	0.520	0.656	0.954	0.012	0.017
R ² _{adi}	0.509	0.623	0.518	0.652	0.949	0.009	0.007
N	316	316	3,409	3,409	3,409	3,091	3,091
N clusters			316	316			
Fixed effects:							
2-digit		\checkmark		\checkmark			\checkmark
Sector					\checkmark		
Year			\checkmark	\checkmark	\checkmark		

Predictive Regressions

Mean reversion in exports

		OLS		IV
$\Delta_{10} \log X_z$	(1)	(2)	(3)	(4)
$\log X_z$	-0.116^{***} (0.040)		- 0.092** (0.040)	-0.600^{***} (0.215)
$\sum_{i=1}^{3} \tilde{s}_{z,i}$		-0.660^{***} (0.199)	- 0.559*** (0.203)	
$\log D_z$	0.101** (0.049)	$- \begin{array}{c} 0.057 \\ (0.036) \end{array}$	0.035 (0.054)	0.542*** (0.200)
R^2	0.146	0.153	0.168	
R^2_{adj}	0.075	0.083	0.096	
Ν	316	316	316	316
2-digit FE	\checkmark	\checkmark	\checkmark	\checkmark

Policy Counterfactuals

Policy counterfactuals

- 1 Misallocation and trade policy
 - policies that hinder growth of granular firms
 - why trade barriers often target individual foreign firms?
- 2 Merger analysis

Policy counterfactuals

- 1 Misallocation and trade policy
 - policies that hinder growth of granular firms
 - why trade barriers often target individual foreign firms?
- 2 Merger analysis
- Welfare analysis of a policy:

$$\hat{\mathbb{W}} \equiv \mathrm{d}\log\frac{Y}{P}$$
$$= \frac{wL}{Y}\mathrm{d}\log w + \frac{\mathrm{d}TR}{Y} + \int_0^1 \alpha_z \frac{\mathrm{d}\Pi_z}{\alpha_z Y}\mathrm{d}z - \int_0^1 \alpha_z \mathrm{d}\log P_z \mathrm{d}z$$

and across sectors $\hat{\mathbb{W}} = \int_0^1 \alpha_z \hat{W}_z \mathrm{d}z$

- In partial equilibrium: $\hat{W}_z = \frac{\mathrm{d}TR_z + \mathrm{d}\Pi_z}{\alpha_z Y} \mathrm{d}\log P_z$
- In general equilibrium: spillovers to other sectors via (w, Y)

Merger

- Merger is more beneficial:
 - **1** The larger is the productivity spillover $\rho \uparrow \varphi'_{z,2} = \rho \varphi_{z,1} + (1-\rho) \varphi_{z,2}$. Baseline $\rho = 0.5$. For low $\rho = 0.1$ **Click**
 - 2 The more open is the economy $\tau\downarrow$
 - **3** The more granular is the sector $\Gamma_z^* \uparrow$

Import Tariff

• Tariff on the top importer $\varsigma_{z,1}$ vs a uniform import tariff $\overline{\varsigma}_z$

- yielding the same tariff revenue
- $\varsigma_{z,1} \succ \overline{\varsigma}_z$, particularly in the foreign granular industries ($\Gamma_z \uparrow$)

Conclusion

Conclusion

- The world is granular! (at least, at the sectoral level) We better develop tools and intuitions to deal with it
- Applications:
 - 1 Innovation, growth and development
 - 2 Misallocation
 - Industrial policy
 - 4 Cities and agglomeration

APPENDIX

Granularity Illustration

• The role of top draw, as the number of draws N increases

Sectoral equilibrium

• Sectoral equilibrium system:

$$p_{i} = \mu_{i}c_{i},$$

$$\mu_{i} = \frac{\varepsilon_{i}}{\varepsilon_{i} - 1} \quad \text{where} \quad \varepsilon_{i} = \sigma(1 - s_{i}) + s_{i},$$

$$s_{i} = \left(\frac{p_{i}}{P}\right)^{1 - \sigma} \quad \text{where} \quad P = \left(\sum_{i=1}^{K} p_{i}^{1 - \sigma}\right)^{1/(1 - \sigma)}$$

▲ back to slides

٠

34 / 30

Probability a sector remains among top-5% of export-intensive sectors

Trade effects of individual firm exit

▲ back

Merger

Low spillover $\varrho = 0.1$

◀ back