The Optimal Macro Tariff

Oleg Itskhoki _{Harvard} Dmitry Mukhin

Paris School of Economics May 2025

Questions

- ▶ What is the optimal macroeconomic tariff when trade is imbalanced?
 - bilateral imbalances across trade partners
 - ▶ more importantly, aggregate CA imbalances reflecting international financial position

Questions

- ▶ What is the optimal macroeconomic tariff when trade is imbalanced?
 - bilateral imbalances across trade partners
 - ▶ more importantly, aggregate CA imbalances reflecting international financial position
- ► Can a tariff be used to (permanently) close an aggregate trade imbalance?

Questions

- ▶ What is the optimal macroeconomic tariff when trade is imbalanced?
 - bilateral imbalances across trade partners
 - ▶ more importantly, aggregate CA imbalances reflecting international financial position
- ► Can a tariff be used to (permanently) close an aggregate trade imbalance?
- ▶ We develop a primal approach (Johnson 1950, Lucas-Stokey 1983, CLW 2014) and an implementability condition (TPF) for the home planner that allows to handle:
 - alternative objectives (e.g., revenue maximization, manufacturing employment)
 - alternative macro models with bilateral and aggregate trade deficits
 - ▶ and valuation effects and convenience yields ("exorbitant privilege") on foreign assets

- 1. Lerner symmetry between import tariff and export tax does not, generally, hold with gross international assets and liabilities
 - combination of a tariff and a subsidy engineers a transfer via valuation effects
 - closing trade deficit could be done with an import tariff or an export subsidy

- 1. Lerner symmetry between import tariff and export tax does not, generally, hold with gross international assets and liabilities
 - combination of a tariff and a subsidy engineers a transfer via valuation effects
 - closing trade deficit could be done with an import tariff or an export subsidy
- 2. With imbalances, the optimal tariff trades off conventional terms-of-trade effects with negative valuation effects
 - ▶ the US optimal tariff is three-fold smaller than under financial autarky (9% vs 34%)
 - US dollar assets offer a hedge to US trade partners against the trade war

- 1. Lerner symmetry between import tariff and export tax does not, generally, hold with gross international assets and liabilities
 - combination of a tariff and a subsidy engineers a transfer via valuation effects
 - closing trade deficit could be done with an import tariff or an export subsidy
- 2. With imbalances, the optimal tariff trades off conventional terms-of-trade effects with negative valuation effects
 - ▶ the US optimal tariff is three-fold smaller than under financial autarky (9% vs 34%)
 - US dollar assets offer a hedge to US trade partners against the trade war
- 3. Convenience yield on US liabilities is essential to reconcile the US intern'l trade and asset positions, as well as the dollar depreciation on the "Liberation Day"

- 1. Lerner symmetry between import tariff and export tax does not, generally, hold with gross international assets and liabilities
 - combination of a tariff and a subsidy engineers a transfer via valuation effects
 - closing trade deficit could be done with an import tariff or an export subsidy
- 2. With imbalances, the optimal tariff trades off conventional terms-of-trade effects with negative valuation effects
 - ▶ the US optimal tariff is three-fold smaller than under financial autarky (9% vs 34%)
 - US dollar assets offer a hedge to US trade partners against the trade war
- 3. Convenience yield on US liabilities is essential to reconcile the US intern'l trade and asset positions, as well as the dollar depreciation on the "Liberation Day"
- 4. Optimal (bilateral) tariffs do not generally depend on (bilateral) trade deficits

Related literature

- Classics: Lerner (1936), Baldwin (1948), Johnson (1950,1953), Gros (1987), Jones (1967), Razin and Svensson (1983), Diamond and Mirrlees (1971)
- ▶ Optimal tariff: Caliendo and Parro (2022) + vast literature
- Imbalances: Cuñat and Zymek (2024), Pujolas and Rossbach (2024), Aguiar, Amador and Fitzgerald (2025), Costinot and Werning (2025)
- Other: Gourinchas and Rey (2007), Farhi, Gopinath and Itskhoki (2014), Itskhoki and Mukhin (2022), Aguiar, Itskhoki and Mukhin (2024)

Outline

Baseline Model with Balanced Trade

Optimal Tariff

Global Imbalances

Closing the imbalance

Convenience Yields

Multi-country and Bilateral Imbalances

Conclusion

Baseline Model: Physical Environment

- ▶ Two-country: Home (the U.S.) and Foreign (the rest of the world, *)
- ► Two goods with resource constraints:

$$Y = C_H + C_H^*$$
 and $Y^* = C_F + C_F^*$

► Homothetic preferences:

$$u(C_H, C_F) = \left[(1 - \gamma)^{\frac{1}{\theta}} C_H^{\frac{\theta - 1}{\theta}} + \gamma^{\frac{1}{\theta}} C_F^{\frac{\theta - 1}{\theta}} \right]^{\frac{\theta}{\theta - 1}},$$
$$u^*(C_H^*, C_F^*) = \left[\gamma^{*\frac{1}{\eta}} C_H^{*\frac{\eta - 1}{\eta}} + (1 - \gamma^*)^{\frac{1}{\eta}} C_F^{*\frac{\eta - 1}{\eta}} \right]^{\frac{\eta}{\eta - 1}}$$

Decentralized Equilibrium

▶ Ad valorem tariffs τ^E, τ^I result in deviations from law of one price:

$$P_H^* = \tau^E P_H$$
 and $P_F = \tau^I P_F^*$

▶ flexible prices; e.g., monetary model with $P_H = 1$ and $P_F^* / \mathcal{E} = 1$

Decentralized Equilibrium

▶ Ad valorem tariffs τ^E, τ^I result in deviations from law of one price:

$$P_H^* = \tau^E P_H$$
 and $P_F = \tau^I P_F^*$

▶ flexible prices; e.g., monetary model with $P_H = 1$ and $P_F^* / \mathcal{E} = 1$

Household optimization:

$$rac{u_F}{u_H} = rac{P_F}{P_H}$$
 and $rac{u_F^*}{u_H^*} = rac{P_F^*}{P_H^*}$

Decentralized Equilibrium

▶ Ad valorem tariffs τ^E, τ^I result in deviations from law of one price:

$$P_H^* = \tau^E P_H$$
 and $P_F = \tau^I P_F^*$

▶ flexible prices; e.g., monetary model with $P_H = 1$ and $P_F^* / \mathcal{E} = 1$

Household optimization:

$$rac{u_F}{u_H} = rac{P_F}{P_H}$$
 and $rac{u_F^*}{u_H^*} = rac{P_F^*}{P_H^*}$

Households and government combined yield the country budget constraint, or TB:

$$P_{H}^{*}C_{H}^{*} = P_{F}^{*}C_{F},$$
 where $\mathcal{S} \equiv \frac{P_{F}^{*}}{P_{H}^{*}}$ is terms of trade

Primal Approach

- ▶ Home planner takes foreign optimization and TB as implementability constraints
- ► Trade policy is the only instrument. Overall tariff wedge:

$$\tau \equiv \tau^I \tau^E = \frac{P_F/P_H}{P_F^*/P_H^*} = \frac{u_F/u_H}{u_F^*/u_H^*}$$

- Lemma (Lerner symmetry): τ^I is equivalent to τ^E .
- \blacktriangleright characterize allocation under generic wedge τ

Primal Approach

- ▶ Home planner takes foreign optimization and TB as implementability constraints
- ▶ Trade policy is the only instrument. Overall tariff wedge:

$$\tau \equiv \tau^I \tau^E = \frac{P_F/P_H}{P_F^*/P_H^*} = \frac{u_F/u_H}{u_F^*/u_H^*}$$

- Lemma (Lerner symmetry): τ^I is equivalent to τ^E .
- $\blacktriangleright\,$ characterize allocation under generic wedge $\tau\,$
- ▶ Lemma (Implementability): The planner can choose any combination (C_F, C_H^*) that satisfies the implementability condition $C_H^* = g(C_F)$ implicitly defined by:

$$u_H^*(C_H^*, Y^* - C_F)C_H^* = u_F^*(C_H^*, Y^* - C_F)C_F$$

Under CES preferences, the function $g(\cdot)$ is strictly increasing and strictly convex.

Trade Possibilities Frontier (TPF)

- ▶ Implementability condition $C_H^* = g(C_F)$ can be equivalently re-stated as:
 - 1. Mapping: $G(C_H^*, C_F; u^*, Y^*) = 0$
 - 2. Trade production function (Diamond and Mirrlees 1971): $C_F = g^{-1}(C_H^*)$

Trade Possibilities Frontier (TPF)

Implementability condition $C_H^* = g(C_F)$ can be equivalently re-stated as:

1. Mapping: $G(C_H^*, C_F; u^*, Y^*) = 0$

- 2. Trade production function (Diamond and Mirrlees 1971): $C_F = g^{-1}(C_H^*)$
- ▶ The planner can maximize any objective subject to implementability and resource constraints: $C_H^* = g(C_F)$ and $C_H + C_H^* = Y$, so long as tariff is the instrument

▶ for example, maximizing $u(C_H, C_F)$ can be represented as:

 $\max_{C_F} u(Y - g(C_F), C_F) \quad \text{which yields optimality} \quad u_H \cdot g' = u_F$

Trade Possibilities Frontier (TPF)

▶ Implementability condition $C_H^* = g(C_F)$ can be equivalently re-stated as:

1. Mapping: $G(C_H^*, C_F; u^*, Y^*) = 0$

- 2. Trade production function (Diamond and Mirrlees 1971): $C_F = g^{-1}(C_H^*)$
- ▶ The planner can maximize any objective subject to implementability and resource constraints: $C_H^* = g(C_F)$ and $C_H + C_H^* = Y$, so long as tariff is the instrument

▶ for example, maximizing $u(C_H, C_F)$ can be represented as:

 $\max_{C_F} u \big(Y - g(C_F), C_F \big) \qquad \text{which yields optimality} \qquad u_H \cdot g' = u_F$

Convenient graphical representation of g in the Edgeworth box (AIM 2024)
 g is an offer curve

Edgeworth box

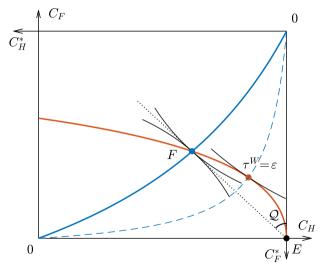


Figure: Laissez faire allocation and the optimal tariff

Outline

Baseline Model with Balanced Trade

Optimal Tariff

Global Imbalances

Closing the imbalance

Convenience Yields

Multi-country and Bilateral Imbalances

Conclusion

Optimal Tariff

Proposition: The optimal tariff against the rest of the world (Johnson 1950):

$$au^W = arepsilon \qquad arepsilon \equiv rac{d\log C_H^*}{d\log C_F} = rac{g'(C_F)\cdot C_F}{g(C_F)}.$$

Under CES, this can be expressed as (Caliendo and Parro 2022):

$$\tau^W = \varepsilon = 1 + \frac{1}{\eta - 1} \frac{1}{\Lambda^*} > 1 \qquad \text{where} \qquad \Lambda^* \equiv \frac{C_F^*}{Y^*} = \frac{P_F^* C_F^*}{P^* C^*}.$$

• using optimality $u_H \cdot g' = u_F$, back out $\tau = \frac{u_H/u_F}{u_H^*/u_F^*} = g' \frac{C_F}{C_H^*}$ using $\frac{u_F^*}{u_H^*} = \frac{P_F^*}{P_H^*} = \frac{C_H^*}{C_F}$ • even a small country ($\Lambda^* = 0$) has an optimal tariff $\tau^W = \frac{\eta}{n-1} \ge 1$

Optimal Tariff

Proposition: The optimal tariff against the rest of the world (Johnson 1950):

$$au^W = arepsilon \qquad arepsilon \equiv rac{d\log C_H^*}{d\log C_F} = rac{g'(C_F)\cdot C_F}{g(C_F)}.$$

Under CES, this can be expressed as (Caliendo and Parro 2022):

$$\tau^W = \varepsilon = 1 + \frac{1}{\eta - 1} \frac{1}{\Lambda^*} > 1 \qquad \text{where} \qquad \Lambda^* \equiv \frac{C_F^*}{Y^*} = \frac{P_F^* C_F^*}{P^* C^*}.$$

• using optimality $u_H \cdot g' = u_F$, back out $\tau = \frac{u_H/u_F}{u_H^*/u_F^*} = g' \frac{C_F}{C_H^*}$ using $\frac{u_F^*}{u_H^*} = \frac{P_F^*}{P_H^*} = \frac{C_H^*}{C_F}$ • even a small country ($\Lambda^* = 0$) has an optimal tariff $\tau^W = \frac{\eta}{n-1} \ge 1$

Free trade:
$$\tau = \frac{u_H/u_F}{u_H^*/u_F^*} = 1$$
. Optimal iff g is linear: $C_H^* = S \cdot C_F$ (exogenous ToT)

Alternative Objectives I: Tariff Revenues

• Under Lerner symmetry (IM 2022), without loss max $\frac{(P_F - P_F^*)C_F}{P_H} = \frac{\tau P_F^* C_F}{P_H^*}$

▶ In the space of allocation, this is equivalent to:

$$\max_{C_F} \ \frac{u_F(Y - g(C_F), C_F)}{u_H(Y - g(C_F), C_F)} C_F - g(C_F),$$

Alternative Objectives I: Tariff Revenues

• Under Lerner symmetry (IM 2022), without loss max $\frac{(P_F - P_F^*)C_F}{P_H} = \frac{\tau P_F^*C_F}{P_{**}^*}$

▶ In the space of allocation, this is equivalent to:

$$\max_{C_F} \ \frac{u_F(Y - g(C_F), C_F)}{u_H(Y - g(C_F), C_F)} C_F - g(C_F),$$

Proposition: The revenue-maximizing tariff is given by

$$au^R = rac{ hetaarepsilon}{ heta-1-arepsilonrac{1-\Lambda}{\Lambda}} \qquad ext{where} \qquad \Lambda \equiv rac{C_H}{Y}$$

(a) as $\theta \to \infty$, the same optimal tariff for welfare and revenues $\tau^W = \tau^R = \varepsilon$ (b) as $\eta \to \infty$, free trade is best for welfare $\tau^W = \varepsilon = 1$, yet $\tau^R = \frac{\theta}{\theta - 1/\Lambda} > 1$ **Alternative Objectives I: Tariff Revenues**

• Under Lerner symmetry (IM 2022), without loss max $\frac{(P_F - P_F^*)C_F}{P_H} = \frac{\tau P_F^* C_F}{P_{**}^*}$

In the space of allocation, this is equivalent to:

$$\max_{C_F} \ \frac{u_F(Y - g(C_F), C_F)}{u_H(Y - g(C_F), C_F)} C_F - g(C_F),$$

Proposition: The revenue-maximizing tariff is given by

$$au^R = rac{ hetaarepsilon}{ heta-1-arepsilonrac{1-\Lambda}{\Lambda}} \qquad ext{where} \qquad \Lambda \equiv rac{C_H}{Y}$$

(a) as $\theta \to \infty$, the same optimal tariff for welfare and revenues $\tau^W = \tau^R = \varepsilon$ (b) as $\eta \to \infty$, free trade is best for welfare $\tau^W = \varepsilon = 1$, yet $\tau^R = \frac{\theta}{\theta - 1/\Lambda} > 1$ Optimal tariff $\tau^W = \varepsilon = 34\%$ versus revenue-max tariff $\tau^R = 80\%$ **Alternative Objectives II: Manufacturing Employment**

Tradables and non-tradables:

$$u = \frac{\rho}{\rho - 1} \left(\kappa C_N^{\frac{\rho - 1}{\rho}} + C_T^{\frac{\rho - 1}{\rho}} \right), \qquad C_T = \left[(1 - \gamma)^{\frac{1}{\theta}} C_H^{\frac{\theta - 1}{\theta}} + \gamma^{\frac{1}{\theta}} C_F^{\frac{\theta - 1}{\theta}} \right]^{\frac{\theta}{\theta - 1}} \quad \rho \le \theta$$

Production economy:

$$C_N = Y_N = F_N(L_N), \qquad Y = F_T(L_T), \qquad L_N + L_T = L$$

• Labor market equilibrium $(\max L_T \text{ is equivalent to } \max C_F = g^{-1}(C_H^*))$

$$\frac{P_H}{P_N} = \frac{W/F'_T}{W/F'_N} = \frac{F'_N(L - L_T)}{F'_T(L_T)} \quad \text{and} \quad \frac{P_H}{P_N} = \frac{u_H}{u_N} = \frac{u_H \left(F_T(L_T) - g(C_F), C_F\right)}{u_N \left(F_N(L - L_T)\right)}$$

Alternative Objectives II: Manufacturing Employment

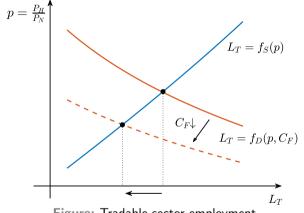


Figure: Tradable-sector employment

- ▶ both a "China shock" $(Y^* \uparrow)$ and tariff τ reduce tradable employment L_T
- ▶ if increasing L_T is a goal, the optimal response to "China shock" is trade subsidy

► Home and foreign impose tariffs:

$$P_F = \tau^I \tau^{E*} P_F^* \qquad \text{and} \qquad P_H^* = \tau^E \tau^{I*} P_H \qquad \Rightarrow \qquad \frac{P_F}{P_H} = \tau \tau^* \frac{P_F^*}{P_H^*}$$

▶ Trade balance for home $P_H^*C_H^* = \tau^* P_F^*C_F$ yields generalized $C_H^* = g(C_F; \tau^*)$

-

► Home and foreign impose tariffs:

$$P_F = \tau^I \tau^{E*} P_F^*$$
 and $P_H^* = \tau^E \tau^{I*} P_H$ \Rightarrow $\frac{P_F}{P_H} = \tau \tau^* \frac{P_F^*}{P_H^*}$

► Trade balance for home $P_H^*C_H^* = \tau^* P_F^*C_F$ yields generalized $C_H^* = g(C_F; \tau^*)$

▶ **Proposition**: Nash tariffs (τ, τ^*) have the same structure as unilateral optimal tariffs, $\tau = \varepsilon$ and $\tau^* = \varepsilon^*$, and satisfy $C_H^* = g(C_F, \tau^*)$ and $C_F = g^*(C_H^*, \tau)$. Under CES utility, $\tau < \tau^W$ and $\tau^* < \tau^{W*}$, but $\tau\tau^* > \max\{\tau^W, \tau^{W*}\}$.

► Home and foreign impose tariffs:

$$P_F = \tau^I \tau^{E*} P_F^*$$
 and $P_H^* = \tau^E \tau^{I*} P_H$ \Rightarrow $\frac{P_F}{P_H} = \tau \tau^* \frac{P_F^*}{P_H^*}$

▶ Trade balance for home $P_H^*C_H^* = \tau^* P_F^*C_F$ yields generalized $C_H^* = g(C_F; \tau^*)$

• **Proposition**: Nash tariffs (τ, τ^*) have the same structure as unilateral optimal tariffs, $\tau = \varepsilon$ and $\tau^* = \varepsilon^*$, and satisfy $C_H^* = g(C_F, \tau^*)$ and $C_F = g^*(C_H^*, \tau)$. Under CES utility, $\tau < \tau^W$ and $\tau^* < \tau^{W*}$, but $\tau\tau^* > \max\{\tau^W, \tau^{W*}\}$.

▶ Trade war turns a 0.5% welfare gain under unilateral tariff into a 2.5% welfare loss

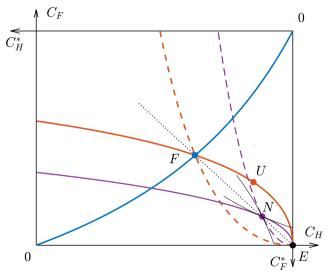


Figure: Tariff war Nash equilibrium

Outline

Baseline Model with Balanced Trade

Optimal Tariff

Global Imbalances

Closing the imbalance Convenience Yields

Multi-country and Bilateral Imbalances

Conclusion

Global Imbalances

► General restriction on long-run trade imbalance from country budget constraint

Global Imbalances

- General restriction on long-run trade imbalance from country budget constraint
- ▶ In any t, B_{t-1}^j , $j \in J_{t-1}$ are asset holding paying dividend D_t^j and valued at Q_t^j , with realized return $R_t^j \equiv (Q_t^j + D_t^j)/Q_{t-1}^j$
- \blacktriangleright \bar{R}_t is the risk-free interest rate between t and t+1 (known at t)
- ▶ The value of new asset positions at t: $\mathcal{B}_t \equiv \sum_{j \in J_t} Q_t^j B_t^j$
- ▶ The pay-out on entire NFA position: $\mathcal{R}_t \mathcal{B}_{t-1} \equiv \sum_{j \in J_{t-1}} (Q_t^j + D_t^j) B_{t-1}^j$
- ► Flow budget constraint:

$$\mathcal{B}_t - \mathcal{R}_t \mathcal{B}_{t-1} = N X_t$$

Global Imbalances

- General restriction on long-run trade imbalance from country budget constraint
- ▶ In any t, B_{t-1}^j , $j \in J_{t-1}$ are asset holding paying dividend D_t^j and valued at Q_t^j , with realized return $R_t^j \equiv (Q_t^j + D_t^j)/Q_{t-1}^j$
- \blacktriangleright \bar{R}_t is the risk-free interest rate between t and t+1 (known at t)
- ▶ The value of new asset positions at t: $\mathcal{B}_t \equiv \sum_{j \in J_t} Q_t^j B_t^j$
- ▶ The pay-out on entire NFA position: $\mathcal{R}_t \mathcal{B}_{t-1} \equiv \sum_{j \in J_{t-1}} (Q_t^j + D_t^j) B_{t-1}^j$
- ► Flow budget constraint:

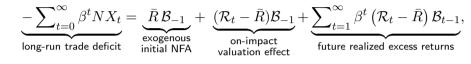
$$\mathcal{B}_t - \mathcal{R}_t \mathcal{B}_{t-1} = N X_t$$

Lemma: If there is no arbitrage in J_t , then there exists SDF Θ_{t+1} such that:

$$\mathbb{E}_t\{\Theta_{t+1}(\mathcal{R}_{t+1}-\bar{R}_t)\}=0.$$

Long-run Trade Imbalance

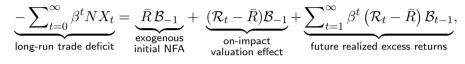
Proposition: Long-run trade deficit is determined by the financial position:



where $\bar{R} = 1/\beta$ is the unconditional average risk-free rate.

Long-run Trade Imbalance

Proposition: Long-run trade deficit is determined by the financial position:



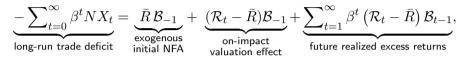
where $\bar{R} = 1/\beta$ is the unconditional average risk-free rate.

• **Corollary**: If there is no arbitrage $\forall s \geq t$, then expected long-run trade deficit:

$$-\sum_{t=0}^{\infty} \mathbb{E}_t \{ \Theta_t N X_t \} = \bar{R} \, \mathcal{B}_{-1} + (\mathcal{R}_0 - \bar{R}) \mathcal{B}_{-1}, \qquad \text{where} \quad \mathbb{E}_0 \Theta_t = \beta^t.$$

Long-run Trade Imbalance

Proposition: Long-run trade deficit is determined by the financial position:



where $\bar{R} = 1/\beta$ is the unconditional average risk-free rate.

- Corollary: If there is no arbitrage $\forall s \ge t$, then expected long-run trade deficit: $-\sum_{t=0}^{\infty} \mathbb{E}_t \{\Theta_t N X_t\} = \bar{R} \mathcal{B}_{-1} + (\mathcal{R}_0 - \bar{R}) \mathcal{B}_{-1}, \quad \text{where} \quad \mathbb{E}_0 \Theta_t = \beta^t.$
- ▶ Tariffs do, in general, have valuation effects on a country's international portfolio
 - but not shaped by trade shares, trade elasticities, or terms of trade
 - ▶ there is an optimal tariff even without the effect on the LR trade imbalance

Static Model with NFA and Valuation Effects

- ▶ International portfolio $(-B, B^*)$ with total net value of $P_F^*B^* P_HB$
 - two interpretations: local-currency bonds or equities (Lucas trees)
 - ▶ no default, inflation, or capital controls

Static Model with NFA and Valuation Effects

- ▶ International portfolio $(-B, B^*)$ with total net value of $P_F^*B^* P_HB$
 - ▶ two interpretations: local-currency bonds or equities (Lucas trees)
 - no default, inflation, or capital controls
- Country budget constraint:

$$\underbrace{P_{H}^{*}C_{H}^{*} - P_{F}^{*}C_{F}}_{NX} + \underbrace{P_{F}^{*}B^{*} - P_{H}B}_{NFA} = 0$$

now two relative prices, ToT $S = \frac{P_{F}^{*}}{P_{H}^{*}}$ and RER $Q = \frac{P_{F}^{*}}{P_{H}}$, such that $Q = \tau^{E}S$

Static Model with NFA and Valuation Effects

- ▶ International portfolio $(-B, B^*)$ with total net value of $P_F^*B^* P_HB$
 - ▶ two interpretations: local-currency bonds or equities (Lucas trees)
 - no default, inflation, or capital controls
- Country budget constraint:

$$\underbrace{P_{H}^{*}C_{H}^{*} - P_{F}^{*}C_{F}}_{NX} + \underbrace{P_{F}^{*}B^{*} - P_{H}B}_{NFA} = 0$$

Now two relative prices, ToT $S = \frac{P_{F}^{*}}{P_{H}^{*}}$ and RER $Q = \frac{P_{F}^{*}}{P_{H}}$, such that $Q = \tau^{E}S$

- Final tariff and (ii) close the deficit $(\min |NX|)$
 - let closing trade deficit requires both NX = 0 and NFA = 0

Lerner symmetry and infinite tariff

Proposition: Lerner symmetry holds iff B = 0 (no home bonds or equity) and international portfolio is in terms of foreign assets B* only.
 With B \neq 0, a combination of an unbounded export tax and import subsidy, or vice versa, engineers a max capital levy on the foreign asset position.

Lerner symmetry and infinite tariff

- Proposition: Lerner symmetry holds iff B = 0 (no home bonds or equity) and international portfolio is in terms of foreign assets B* only.
 With B \neq 0, a combination of an unbounded export tax and import subsidy, or vice versa, engineers a max capital levy on the foreign asset position.
- Implementability allows for an independent use of τ^E for a given wedge $\tau = \tau^E \tau^I$:

$$u_{H}^{*}(C_{H}^{*}, Y^{*} - C_{F}) \cdot \left(C_{H}^{*} - \frac{1}{\tau^{E}}B\right) = u_{F}^{*}(C_{H}^{*}, Y^{*} - C_{F}) \cdot \left(C_{F} - B^{*}\right)$$

Lerner symmetry and infinite tariff

- Proposition: Lerner symmetry holds iff B = 0 (no home bonds or equity) and international portfolio is in terms of foreign assets B* only.
 With B \neq 0, a combination of an unbounded export tax and import subsidy, or vice versa, engineers a max capital levy on the foreign asset position.
- Implementability allows for an independent use of τ^E for a given wedge $\tau = \tau^E \tau^I$:

$$u_{H}^{*}(C_{H}^{*}, Y^{*} - C_{F}) \cdot \left(C_{H}^{*} - \frac{1}{\tau^{E}}B\right) = u_{F}^{*}(C_{H}^{*}, Y^{*} - C_{F}) \cdot \left(C_{F} - B^{*}\right)$$

▶ Lemma: If $B \in (0, Y)$ and $B^* \in (0, Y^*)$, then home planner can use (τ^E, τ^I) to unilaterally implement any balanced-trade equilibrium, including trade autarky.

- \blacktriangleright We restrict $\tau^E=1$ and study the use of the import tariff τ^I
- ▶ Implementability constraint g is now: $u_H^* \cdot (C_H^* B) = u_F^* \cdot (C_F B^*)$

- \blacktriangleright We restrict $\tau^E=1$ and study the use of the import tariff τ^I
- ▶ Implementability constraint g is now: $u_H^* \cdot (C_H^* B) = u_F^* \cdot (C_F B^*)$
- **Proposition**: The optimal import tariff satisfies $\tau = \varepsilon \cdot \frac{EX}{IM}$ and under CES equals:

$$\tau = 1 + \frac{1}{\eta \left(1 + \frac{\bar{B}}{EX - \bar{B}}\right) - 1} \cdot \frac{1}{\Lambda^*},$$

where $\bar{B} \equiv P_H^* B$ is the value of dollar debt, $EX = P_H^* C_H^*$ and $IM = P_F^* C_F$.

- \blacktriangleright We restrict $\tau^E=1$ and study the use of the import tariff τ^I
- ▶ Implementability constraint g is now: $u_H^* \cdot (C_H^* B) = u_F^* \cdot (C_F B^*)$
- **Proposition**: The optimal import tariff satisfies $\tau = \varepsilon \cdot \frac{EX}{IM}$ and under CES equals:

$$\tau = 1 + \frac{1}{\eta \left(1 + \frac{\bar{B}}{EX - \bar{B}}\right) - 1} \cdot \frac{1}{\Lambda^*},$$

where $\bar{B} \equiv P_H^* B$ is the value of dollar debt, $EX = P_H^* C_H^*$ and $IM = P_F^* C_F$.

• Corollary: (a) If $B^* = 0$, τ is increasing in trade deficits IM/EX

$$\tau \approx \frac{\eta}{\eta-1} \cdot \left[1 + \frac{IM - EX}{IM}\right]$$

- \blacktriangleright We restrict $\tau^E=1$ and study the use of the import tariff τ^I
- ▶ Implementability constraint g is now: $u_H^* \cdot (C_H^* B) = u_F^* \cdot (C_F B^*)$
- **Proposition**: The optimal import tariff satisfies $\tau = \varepsilon \cdot \frac{EX}{IM}$ and under CES equals:

$$\tau = 1 + \frac{1}{\eta \left(1 + \frac{\bar{B}}{EX - \bar{B}}\right) - 1} \cdot \frac{1}{\Lambda^*},$$

where $\bar{B} \equiv P_H^* B$ is the value of dollar debt, $EX = P_H^* C_H^*$ and $IM = P_F^* C_F$.

• Corollary: (a) If $B^* = 0$, τ is increasing in trade deficits IM/EX

(b) In general, trade imbalances are neither necessary nor sufficient to affect τ .

- (c) US balance sheet: $B > B^* > 0$. Optimal τ is lower than in financial autarky.
 - ▶ the optimal tariff is 9% vs 34% when B = 0, and welfare gains are 0.1% vs 0.6%
 - US trade partners accumulate B as a hedge against trade war (Dooley et al. 2004)
- Intuition: ToT manipulation versus the valuation effect (negative and $\propto B$) 19/27

Budget constraint:
$$\underbrace{(P_H^*C_H^* - P_F^*C_F)}_{=NX} + \underbrace{(P_F^*B^* - P_HB)}_{=NFA} = 0$$

Budget constraint:
$$\underbrace{(P_H^*C_H^* - P_F^*C_F)}_{=NX} + \underbrace{(P_F^*B^* - P_HB)}_{=NFA} = 0$$

Lemma: Given $(-B, B^*)$, a necessary and sufficient condition for NX = 0 is that terms of trade and the real exchange rate take the following values:

$$\mathcal{S} \equiv \frac{P_F^*}{P_H^*} = \frac{C_H^*}{C_F}$$
 and $\mathcal{Q} \equiv \frac{P_F^*}{P_H} = \frac{B}{B^*}$.

RER is now also essential as a proxy for asset valuation effects

Budget constraint:
$$\underbrace{(P_H^*C_H^* - P_F^*C_F)}_{=NX} + \underbrace{(P_F^*B^* - P_HB)}_{=NFA} = 0$$

Lemma: Given $(-B, B^*)$, a necessary and sufficient condition for NX = 0 is that terms of trade and the real exchange rate take the following values:

$$\mathcal{S} \equiv \frac{P_F^*}{P_H^*} = \frac{C_H^*}{C_F} \qquad \text{and} \qquad \mathcal{Q} \equiv \frac{P_F^*}{P_H} = \frac{B}{B^*}.$$

RER is now also essential as a proxy for asset valuation effects

▶ With import tariff alone, implementability *g* requires:

$$S = Q = \frac{P_F^*}{P_H^*} = \frac{B}{B^*} = \frac{C_H^*}{C_F} = \frac{u_F^*(C_H^*, Y^* - C_F)}{u_H^*(C_H^*, Y^* - C_F)}$$

Budget constraint:
$$\underbrace{(P_H^*C_H^* - P_F^*C_F)}_{=NX} + \underbrace{(P_F^*B^* - P_HB)}_{=NFA} = 0$$

Lemma: Given $(-B, B^*)$, a necessary and sufficient condition for NX = 0 is that terms of trade and the real exchange rate take the following values:

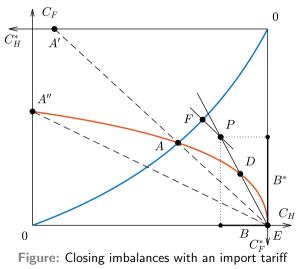
$$\mathcal{S} \equiv \frac{P_F^*}{P_H^*} = \frac{C_H^*}{C_F} \qquad \text{and} \qquad \mathcal{Q} \equiv \frac{P_F^*}{P_H} = \frac{B}{B^*}.$$

- RER is now also essential as a proxy for asset valuation effects
- ▶ With import tariff alone, implementability *g* requires:

$$S = Q = \frac{P_F^*}{P_H^*} = \frac{B}{B^*} = \frac{C_H^*}{C_F} = \frac{u_F^*(C_H^*, Y^* - C_F)}{u_H^*(C_H^*, Y^* - C_F)}$$

Proposition: If NFA > 0 and NX < 0 under free trade, there is a unique balanced-trade equilibrium that the planner can implement with an import tariff.</p>

Closing the Imbalance with an Import Tariff



▶ rebalancing $NX\uparrow$ requires an exchange rate appreciation dictated by (B, B^*)

Closing the Imbalance: Full Set of Possibilities

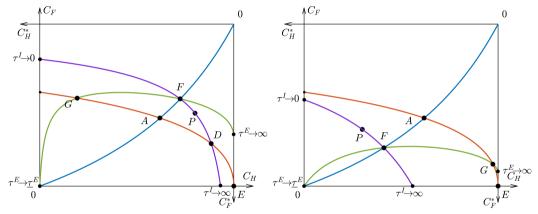


Figure: Effects of import and export tariffs under imbalances

▶ in contrast to Lerner symmetry under balanced trade, closing trade deficits requires an import tariff $\tau^I > 1$ or an export subsidy $\tau^E < 1$

•
$$\tau^I \to \infty$$
 does not result in $NFA = 0$ and $NX = 0$

A Model with Convenience Yields

- ▶ Home B_t and foreign B_t^* , exogenously supplied (e.g., govt debt or Lucas trees)
- Foreign households

$$\max_{\{C_t^*,B_t\}} \sum_{t=0}^{\infty} \beta^t \Big(u(C_t^*) + v_t(B_t) \Big) \quad \text{s.t. } Q_t B_t = (P_{Ht} + \delta Q_t) B_{t-1} + P_{Ft}^* Y_t^* - P_t^* C_t^* + T_t^*$$

• Return
$$R_t = \frac{P_{Ht} + \delta Q_t}{Q_{t-1}}$$
 for $\delta \in [0, 1]$. Euler equation:

$$Q_t = \beta \frac{u'(C_{t+1}^*)}{u'(C_t^*)} \frac{P_t^*}{P_{t+1}^*} (P_{Ht+1} + \delta Q_{t+1}) + \frac{v_t'(B_t)}{u'(C_t^*)/P_t^*}$$

▶ Flow budget constraint, where NFA is $\mathcal{B}_t \equiv Q_t^* B_t^* - Q_t B_t$:

$$\mathcal{B}_{t} = R_{t}^{*}\mathcal{B}_{t-1} + (R_{t}^{*} - R_{t})Q_{t-1}B_{t-1} + NX_{t},$$

Valuation Effects

 $\blacktriangleright~$ Steady state with $R < 1/\beta$ and $R^* = 1/\beta$ where:

$$Q^* = \frac{\beta}{1 - \beta \delta} P_F^* \qquad \text{and} \qquad Q = \frac{1}{1 - \beta \delta} \left(\beta P_H + \frac{v'(B)}{u'(C^*)/P^*} \right)$$

Valuation Effects

 $\blacktriangleright~$ Steady state with $R < 1/\beta$ and $R^* = 1/\beta$ where:

$$Q^* = \frac{\beta}{1 - \beta \delta} P_F^* \qquad \text{and} \qquad Q = \frac{1}{1 - \beta \delta} \left(\beta P_H + \frac{v'(B)}{u'(C^*)/P^*} \right)$$

Country budget constraint:

$$NX + (1 - \beta) \left((P_F^* + \delta Q^*) B^* - (P_H + \delta Q) B \right) + \frac{v'(B)B}{u'(C^*)/P^*} = 0$$

Valuation Effects

 $\blacktriangleright~$ Steady state with $R < 1/\beta$ and $R^* = 1/\beta$ where:

$$Q^* = \frac{\beta}{1 - \beta \delta} P_F^* \qquad \text{and} \qquad Q = \frac{1}{1 - \beta \delta} \left(\beta P_H + \frac{v'(B)}{u'(C^*)/P^*} \right)$$

Country budget constraint:

$$NX + (1 - \beta) \left((P_F^* + \delta Q^*) B^* - (P_H + \delta Q) B \right) + \frac{v'(B)B}{u'(C^*)/P^*} = 0$$

Lemma: The intertemporal budget constraint is equivalent to

$$NX + \frac{1 - \beta}{1 - \beta\delta} (P_F^* B^* - P_H B) + \frac{1 - \delta}{1 - \beta\delta} \cdot \frac{v'(B)B}{u'(C^*)/P^*} = 0.$$

Valuation effects are zero for equity ($\delta = 1$), highest for short-term bonds ($\delta = 0$). _{24/27}

Optimal Tariff with Convenience Yield

▶ Lemma: An import tariff can depreciate the real exchange rate $Q = P_F^*/P_H$ if it triggers negative valuation effects due to a reduction in convenience yield v'(B).

Optimal Tariff with Convenience Yield

- ▶ Lemma: An import tariff can depreciate the real exchange rate $Q = P_F^*/P_H$ if it triggers negative valuation effects due to a reduction in convenience yield v'(B).
- **Proposition**: If CY is exogenous, the optimal import tariff is given by

$$\tau = 1 + \frac{1}{\eta \left(1 + \frac{\bar{B}}{EX - \bar{B}}\right) - 1} \cdot \frac{1 + (1 - \Lambda^*) \frac{CY}{EX - \bar{B}}}{\Lambda^*},\tag{1}$$

where $\bar{B}^* \equiv \frac{1-\beta}{1-\beta\delta}P_F^*B^*$ and $\bar{B} \equiv \frac{1-\beta}{1-\beta\delta}P_HB$ are flow cash payouts on home assets and liabilities, and $CY \equiv \frac{1-\delta}{1-\beta\delta}\frac{v'(B)B}{u'(C^*)/P^*}$ is the flow value of convenience yield, such that $NX + (\bar{B}^* - \bar{B}) + CY = 0$ is the country budget constraint.

Optimal Tariff with Convenience Yield

- ▶ Lemma: An import tariff can depreciate the real exchange rate $Q = P_F^*/P_H$ if it triggers negative valuation effects due to a reduction in convenience yield v'(B).
- **Proposition**: If CY is exogenous, the optimal import tariff is given by

$$\tau = 1 + \frac{1}{\eta \left(1 + \frac{\bar{B}}{EX - \bar{B}}\right) - 1} \cdot \frac{1 + (1 - \Lambda^*) \frac{CY}{EX - \bar{B}}}{\Lambda^*},\tag{1}$$

where $\bar{B}^* \equiv \frac{1-\beta}{1-\beta\delta}P_F^*B^*$ and $\bar{B} \equiv \frac{1-\beta}{1-\beta\delta}P_HB$ are flow cash payouts on home assets and liabilities, and $CY \equiv \frac{1-\delta}{1-\beta\delta}\frac{v'(B)B}{u'(C^*)/P^*}$ is the flow value of convenience yield, such that $NX + (\bar{B}^* - \bar{B}) + CY = 0$ is the country budget constraint.

If convenience yield is endogenous to trade war, then welfare benefits of tariff must offset the cost of loss of excess returns

Outline

Baseline Model with Balanced Trade

Optimal Tariff

Global Imbalances

Closing the imbalance Convenience Yields

Multi-country and Bilateral Imbalances

Conclusion

Multi-country (TBC)

▶ The method with implementability generalizes to multiple countries

$$\max_{\{C_j^*\}} u(\{Y_j - C_j^*\}_{j=0}^N) \quad \text{s.t.} \quad \sum_{j=0}^N u_j^*(\{C_j^*\})(Y_j^* - C_j^*) = 0.$$

Multi-country (TBC)

▶ The method with implementability generalizes to multiple countries

$$\max_{\{C_j^*\}} u(\{Y_j - C_j^*\}_{j=0}^N) \quad \text{s.t.} \quad \sum_{j=0}^N u_j^*(\{C_j^*\})(Y_j^* - C_j^*) = 0.$$

• **Proposition**: If foreign countries share consumption risk, then the optimal tariff for country j is:

$$au_j = 1 + rac{1}{ heta - 1} rac{1}{\Lambda_j^*}, \qquad ext{where} \quad \Lambda_j^* \equiv rac{C_j^*}{Y_j}.$$

Multi-country (TBC)

▶ The method with implementability generalizes to multiple countries

$$\max_{\{C_j^*\}} u(\{Y_j - C_j^*\}_{j=0}^N) \quad \text{s.t.} \quad \sum_{j=0}^N u_j^*(\{C_j^*\})(Y_j^* - C_j^*) = 0.$$

• **Proposition**: If foreign countries share consumption risk, then the optimal tariff for country j is:

$$au_j = 1 + rac{1}{ heta - 1} rac{1}{\Lambda_j^*}, \qquad ext{where} \quad \Lambda_j^* \equiv rac{C_j}{Y_j}.$$

Otherwise, things look like this...

$$\tau_j = \frac{1}{\Lambda_j^*} \left[\frac{1}{\theta} \bar{\tau}_j + \frac{\theta - 1}{\theta} \sum_{i=1}^N \alpha_{ji} \bar{\tau}_i \right], \qquad \text{ where } \quad \bar{\tau}_i \equiv \sum_{j=0}^N s_{ji} \tau_j$$

Outline

Baseline Model with Balanced Trade

Optimal Tariff

Global Imbalances

Closing the imbalance

Convenience Yields

Multi-country and Bilateral Imbalances

Conclusion

Conclusion

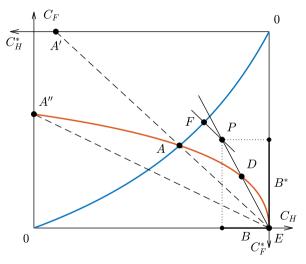


Figure: Closing imbalances with an import tariff